Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/40881
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVERBIEST, Joeri-
dc.contributor.authorBONNECHERE, Bruno-
dc.contributor.authorSaeys, Wim-
dc.contributor.authorvan de Walle, Patricia-
dc.contributor.authorTruijen, Steven-
dc.contributor.authorMEYNS, Pieter-
dc.date.accessioned2023-09-14T06:37:25Z-
dc.date.available2023-09-14T06:37:25Z-
dc.date.issued2023-
dc.date.submitted2023-09-13T12:57:42Z-
dc.identifier.citationSENSORS, 23 (16) (Art N° 7166)-
dc.identifier.urihttp://hdl.handle.net/1942/40881-
dc.description.abstractIntroduction. Spatiotemporal gait parameters, e.g., gait stride length, are measurements that are classically derived from instrumented gait analysis. Today, different solutions are available for gait assessment outside the laboratory, specifically for spatiotemporal gait parameters. Such solutions are wearable devices that comprise an inertial measurement unit (IMU) sensor and a microcontroller (MCU). However, these existing wearable devices are resource-constrained. They contain a processing unit with limited processing and memory capabilities which limit the use of machine learning to estimate spatiotemporal gait parameters directly on the device. The solution for this limitation is embedded machine learning or tiny machine learning (tinyML). This study aims to create a machine-learning model for gait stride length estimation deployable on a microcontroller. Materials and Method. Starting from a dataset consisting of 4467 gait strides from 15 healthy people, measured by IMU sensor, and using state-of-the-art machine learning frameworks and machine learning operations (MLOps) tools, a multilayer 1D convolutional float32 and int8 model for gait stride length estimation was developed. Results. The developed float32 model demonstrated a mean accuracy and precision of 0.23 +/- 4.3 cm, and the int8 model demonstrated a mean accuracy and precision of 0.07 +/- 4.3 cm. The memory usage for the float32 model was 284.5 kB flash and 31.9 kB RAM. The int8 model memory usage was 91.6 kB flash and 13.6 kB RAM. Both models were able to be deployed on a Cortex-M4F 64 MHz microcontroller with 1 MB flash memory and 256 kB RAM. Conclusions. This study shows that estimating gait stride length directly on a microcontroller is feasible and demonstrates the potential of embedded machine learning, or tinyML, in designing wearable sensor devices for gait analysis.-
dc.description.sponsorshipThis research was supported by the Karel de Grote University of Applied Sciences and Arts through funding by the Flemish government specifically allocated to practice-based research at universities of applied sciences-
dc.language.isoen-
dc.publisherMDPI-
dc.rights2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).-
dc.subject.otherembedded machine learning-
dc.subject.othertinyML-
dc.subject.othermachine learning-
dc.subject.otherregression-
dc.subject.otherneural network-
dc.subject.otherhealthcare-
dc.subject.othergait analysis-
dc.subject.othergait stride length-
dc.subject.otherinertial measurement unit-
dc.subject.otherIMU-
dc.subject.othermicrocontroller-
dc.subject.otherMCU-
dc.subject.otherwearable sensors-
dc.titleGait Stride Length Estimation Using Embedded Machine Learning-
dc.typeJournal Contribution-
dc.identifier.issue16-
dc.identifier.volume23-
local.format.pages13-
local.bibliographicCitation.jcatA1-
dc.description.notesVerbiest, JR (corresponding author), Karel Grote Hogesch Antwerpen Univ Assoc, Dept Ind Sci & Technol, Antwerp, Belgium.; Verbiest, JR (corresponding author), Hasselt Univ, Fac Rehabil Sci, REVAL Rehabil Res Ctr, B-3590 Diepenbeek, Belgium.-
dc.description.notesjoeri.verbiest@kdg.be-
local.publisher.placeST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr7166-
dc.identifier.doi10.3390/s23167166-
dc.identifier.pmid37631706-
dc.identifier.isi001056906000001-
local.provider.typewosris-
local.description.affiliation[Verbiest, Joeri R.] Karel Grote Hogesch Antwerpen Univ Assoc, Dept Ind Sci & Technol, Antwerp, Belgium.-
local.description.affiliation[Verbiest, Joeri R.; Bonnechere, Bruno; Meyns, Pieter] Hasselt Univ, Fac Rehabil Sci, REVAL Rehabil Res Ctr, B-3590 Diepenbeek, Belgium.-
local.description.affiliation[Bonnechere, Bruno] Hasselt Univ, Data Sci Inst, Technol Supported & Data Driven Rehabil, B-3590 Diepenbeek, Belgium.-
local.description.affiliation[Saeys, Wim; van de Walle, Patricia; Truijen, Steven] Univ Antwerp, Fac Med & Hlth Sci, Dept Rehabil Sci & Physiotherapy, MOVANT, B-2610 Antwerp, Belgium.-
local.description.affiliation[van de Walle, Patricia] Clin Gait Anal Lab Antwerp, Heder, B-2180 Ekeren, Antwerp, Belgium.-
local.uhasselt.internationalyes-
item.fullcitationVERBIEST, Joeri; BONNECHERE, Bruno; Saeys, Wim; van de Walle, Patricia; Truijen, Steven & MEYNS, Pieter (2023) Gait Stride Length Estimation Using Embedded Machine Learning. In: SENSORS, 23 (16) (Art N° 7166).-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.contributorVERBIEST, Joeri-
item.contributorBONNECHERE, Bruno-
item.contributorSaeys, Wim-
item.contributorvan de Walle, Patricia-
item.contributorTruijen, Steven-
item.contributorMEYNS, Pieter-
crisitem.journal.eissn1424-8220-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Gait Stride Length Estimation Using EmbeddedMachine Learning.pdfPublished version3.22 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

2
checked on Sep 26, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.