Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/41476
Title: The Effect of Leukocyte- and Platelet-Rich Fibrin on Central and Peripheral Nervous System Neurons-Implications for Biomaterial Applicability
Authors: LAMBRICHTS, Ivo 
WOLFS, Esther 
BRONCKAERS, Annelies 
GERVOIS, Pascal 
VANGANSEWINKEL, Tim 
Issue Date: 2023
Publisher: MDPI
Source: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 24 (18) (Art N° 14314)
Abstract: Leukocyte- and Platelet-Rich Fibrin (L-PRF) is a second-generation platelet concentrate that is prepared directly from the patient's own blood. It is widely used in the field of regenerative medicine, and to better understand its clinical applicability we aimed to further explore the biological properties and effects of L-PRF on cells from the central and peripheral nervous system. To this end, L-PRF was prepared from healthy human donors, and confocal, transmission, and scanning electron microscopy as well as secretome analysis were performed on these clots. In addition, functional assays were completed to determine the effect of L-PRF on neural stem cells (NSCs), primary cortical neurons (pCNs), and peripheral dorsal root ganglion (DRG) neurons. We observed that L-PRF consists of a dense but porous fibrin network, containing leukocytes and aggregates of activated platelets that are distributed throughout the clot. Antibody array and ELISA confirmed that it is a reservoir for a plethora of growth factors. Key molecules that are known to have an effect on neuronal cell functions such as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF) were slowly released over time from the clots. Next, we found that the L-PRF secretome had no significant effect on the proliferative and metabolic activity of NSCs, but it did act as a chemoattractant and improved the migration of these CNS-derived stem cells. More importantly, L-PRF growth factors had a detrimental effect on the survival of pCNs, and consequently, also interfered with their neurite outgrowth. In contrast, we found a positive effect on peripheral DRG neurons, and L-PRF growth factors improved their survival and significantly stimulated the outgrowth and branching of their neurites. Taken together, our study demonstrates the positive effects of the L-PRF secretome on peripheral neurons and supports its use in regenerative medicine but care should be taken when using it for CNS applications.
Notes: Lambrichts, I; Vangansewinkel, T (corresponding author), UHasselt Hasselt Univ, Biomed Res Inst, Cardio & Organ Syst, B-3590 Diepenbeek, Belgium.; Vangansewinkel, T (corresponding author), Ctr Brain & Dis Res VIB, Lab Neurobiol, B-3000 Leuven, Belgium.
ivo.lambrichts@uhasselt.be; esther.wolfs@uhasselt.be;
annelies.bronckaers@uhasselt.be; pascal.gervois@uhasselt.be;
tim.vangansewinkel@uhasselt.vib.be
Keywords: leukocyte- and platelet-rich fibrin;leukocyte-and platelet-rich fibrin;neural stem cells;neural stem cells;primary cortical neuronssensory neurons;primary cortical neurons;sensory neurons;neurotoxicity;neurotoxicity;neuritogenesis;neuritogenesis
Document URI: http://hdl.handle.net/1942/41476
ISSN: 1661-6596
e-ISSN: 1422-0067
DOI: 10.3390/ijms241814314
ISI #: 001071921500001
Rights: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
Category: A1
Type: Journal Contribution
Appears in Collections:Research publications

Show full item record

WEB OF SCIENCETM
Citations

1
checked on Apr 22, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.