Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/43102
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEBRAHIMI, Mahsa-
dc.contributor.authorARREGUIN CAMPOS, Mariana-
dc.contributor.authorDookhith, Aaliyah Z.-
dc.contributor.authorAldana, Ana A.-
dc.contributor.authorLynd, Nathaniel A.-
dc.contributor.authorSanoja, Gabriel E.-
dc.contributor.authorBaker, Matthew B.-
dc.contributor.authorPITET, Louis-
dc.date.accessioned2024-06-11T08:14:51Z-
dc.date.available2024-06-11T08:14:51Z-
dc.date.issued2024-
dc.date.submitted2024-06-11T08:04:43Z-
dc.identifier.citationACS Applied Materials & Interfaces, 16 (19) , p. 25353 -25365-
dc.identifier.issn1944-8244-
dc.identifier.urihttp://hdl.handle.net/1942/43102-
dc.description.abstractTissue engineering and regenerative medicine are confronted with a persistent challenge: the urgent demand for robust, load-bearing, and biocompatible scaffolds that can effectively endure substantial deformation. Given that inadequate mechanical performance is typically rooted in structural deficiencies-specifically, the absence of energy dissipation mechanisms and network uniformity-a crucial step toward solving this problem is generating synthetic approaches that enable exquisite control over network architecture. This work systematically explores structure-property relationships in poly(ethylene glycol)-based hydrogels constructed utilizing thiol-yne chemistry. We systematically vary polymer concentration, constituent molar mass, and cross-linking protocols to understand the impact of architecture on hydrogel mechanical properties. The network architecture was resolved within the molecular model of Rubinstein-Panyukov to obtain the densities of chemical cross-links and entanglements. We employed both nucleophilic and radical pathways, uncovering notable differences in mechanical response, which highlight a remarkable degree of versatility achievable by tuning readily accessible parameters. Our approach yielded hydrogels with good cell viability and remarkably robust tensile and compression profiles. Finally, the hydrogels are shown to be amenable to advanced processing techniques by demonstrating injection- and extrusion-based 3D printing. Tuning the mechanism and network regularity during the cell-compatible formation of hydrogels is an emerging strategy to control the properties and processability of hydrogel biomaterials by making simple and rational design choices.-
dc.description.sponsorshipThe authors gratefully acknowledge funding for this work from the Research Foundation Flanders (FWO) under contract G080020N. This research was also made possible with partial support from the Dutch Research Foundation (NWO) under the Innovation Fund Chemistry, project “DynAM” under contract 731.016.202. Additionally, partial support from the Dutch Ministry of Economic Affairs is acknowledged. A.Z.D. and G.E.S. gratefully acknowledge the Cockrell School of Engineering of The University of Texas at Austin for funding.-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.rights2024 American Chemical Society-
dc.subject.other3D fabrication-
dc.subject.otherhydrogels-
dc.subject.othernetwork topology-
dc.subject.otherhydrogel injection-
dc.subject.othertissue engineering-
dc.titleTailoring Network Topology in Mechanically Robust Hydrogels for 3D Printing and Injection-
dc.typeJournal Contribution-
dc.identifier.epage25365-
dc.identifier.issue19-
dc.identifier.spage25353-
dc.identifier.volume16-
local.format.pages13-
local.bibliographicCitation.jcatA1-
dc.description.notesPitet, LM (corresponding author), Hasselt Univ, Inst Mat Res Imo Imomec, Adv Funct Polymers AFP Lab, B-3500 Hasselt, Belgium.; Baker, MB (corresponding author), Maastricht Univ, Dept Instructive Biomat Engn, MERLN Inst Technol Inspired Regenerat Med, NL-6229 ET Maastricht, Netherlands.; Baker, MB (corresponding author), Maastricht Univ, MERLN Inst Technol Inspired Regenerat Med, Dept Complex Tissue Regenerat, NL-6229 ET Maastricht, Netherlands.-
dc.description.notesm.baker@maastrichtuniversity.nl; louis.pitet@uhasselt.be-
local.publisher.place1155 16TH ST, NW, WASHINGTON, DC 20036 USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1021/acsami.4c03209-
dc.identifier.pmid38712527-
dc.identifier.isi001225123200001-
dc.contributor.orcidPitet, Louis/0000-0002-4733-0707; Sanoja, Gabriel/0000-0001-5477-2346;-
dc.contributor.orcidDookhith, Aaliyah Z/0000-0003-4219-5515-
dc.identifier.eissn1944-8252-
dc.identifier.eissn1944-8252-
local.provider.typewosris-
local.description.affiliation[Ebrahimi, Mahsa; Arreguin-Campos, Mariana; Pitet, Louis M.] Hasselt Univ, Inst Mat Res Imo Imomec, Adv Funct Polymers AFP Lab, B-3500 Hasselt, Belgium.-
local.description.affiliation[Ebrahimi, Mahsa; Arreguin-Campos, Mariana; Aldana, Ana A.; Baker, Matthew B.] Maastricht Univ, Dept Instructive Biomat Engn, MERLN Inst Technol Inspired Regenerat Med, NL-6229 ET Maastricht, Netherlands.-
local.description.affiliation[Ebrahimi, Mahsa; Arreguin-Campos, Mariana; Aldana, Ana A.; Baker, Matthew B.] Maastricht Univ, MERLN Inst Technol Inspired Regenerat Med, Dept Complex Tissue Regenerat, NL-6229 ET Maastricht, Netherlands.-
local.description.affiliation[Dookhith, Aaliyah Z.; Lynd, Nathaniel A.; Sanoja, Gabriel E.] Univ Texas Austin, McKetta Dept Chem Engn, Austin, TX 78712 USA.-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.contributorEBRAHIMI, Mahsa-
item.contributorARREGUIN CAMPOS, Mariana-
item.contributorDookhith, Aaliyah Z.-
item.contributorAldana, Ana A.-
item.contributorLynd, Nathaniel A.-
item.contributorSanoja, Gabriel E.-
item.contributorBaker, Matthew B.-
item.contributorPITET, Louis-
item.embargoEndDate2024-11-07-
item.fullcitationEBRAHIMI, Mahsa; ARREGUIN CAMPOS, Mariana; Dookhith, Aaliyah Z.; Aldana, Ana A.; Lynd, Nathaniel A.; Sanoja, Gabriel E.; Baker, Matthew B. & PITET, Louis (2024) Tailoring Network Topology in Mechanically Robust Hydrogels for 3D Printing and Injection. In: ACS Applied Materials & Interfaces, 16 (19) , p. 25353 -25365.-
item.accessRightsEmbargoed Access-
crisitem.journal.issn1944-8244-
crisitem.journal.eissn1944-8252-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
ebrahimi-et-al-2024-tailoring-network-topology-in-mechanically-robust-hydrogels-for-3d-printing-and-injection.pdf
  Restricted Access
Published version9.73 MBAdobe PDFView/Open    Request a copy
EBRM-3-Manuscript vFinal_ACS_Clean.pdf
  Until 2024-11-07
Peer-reviewed author version12.85 MBAdobe PDFView/Open    Request a copy
Show simple item record

WEB OF SCIENCETM
Citations

1
checked on Oct 5, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.