Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/43161
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVERBEECK, Johan-
dc.contributor.authorGeroldinger, M-
dc.contributor.authorThiel, K-
dc.contributor.authorHooker, AC-
dc.contributor.authorUeckert, S-
dc.contributor.authorKarlsson, M-
dc.contributor.authorBathke, AC-
dc.contributor.authorBauer, JW-
dc.contributor.authorMOLENBERGHS, Geert-
dc.contributor.authorZimmermann, G-
dc.date.accessioned2024-06-14T13:05:09Z-
dc.date.available2024-06-14T13:05:09Z-
dc.date.issued2023-
dc.date.submitted2024-06-14T12:56:26Z-
dc.identifier.citationBIOMETRICS, 79 (4) , p. 3998 -4011-
dc.identifier.urihttp://hdl.handle.net/1942/43161-
dc.description.abstractTo optimize the use of data from a small number of subjects in rare disease trials, an at first sight advantageous design is the repeated measures cross-over design. However, it is unclear how these within-treatment period and within-subject clustered data are best analyzed in small-sample trials. In a real-data simulation study based upon a recent epidermolysis bullosa simplex trial using this design, we compare non-parametric marginal models, generalized pairwise comparison models, GEE-type models and parametric model averaging for both repeated binary and count data. The recommendation of which methodology to use in rare disease trials with a repeated measures cross-over design depends on the type of outcome and the number of time points the treatment has an effect on. The non-parametric marginal model testing the treatment-time-interaction effect is suitable for detecting between group differences in the shapes of the longitudinal profiles. For binary outcomes with the treatment effect on a single time point, the parametric model averaging method is recommended, while in the other cases the unmatched generalized pairwise comparison methodology is recommended. Both provide an easily interpretable effect size measure, and do not require exclusion of periods or subjects due to incompleteness.-
dc.description.sponsorshipFunding WISS 2025 project ’IDA-Lab Salzburg’, Grant/Award Numbers: 20102-F1901166-KZP, 20204-WISS/225/197-2019; European Joint Programme on Rare Diseases (EJP RD), EU Horizon 2020, Grant/Award Number: grant agreement no. 825575 ACKNOWLEDGMENTS We are grateful for the ability to use the EBS trial data. Additionally, we would like to thank Geert Verbeke for technical insights into SAS procedures. The present work has been performed within the framework of the “EBStatMax Demonstration Project” funded by the European Joint Programme on Rare Diseases (EJP RD), EU Horizon 2020 grant agreement no. 825575. GZ gratefully acknowledges the support of the WISS 2025 project ‘IDA-Lab Salzburg’ (20204-WISS/225/197-2019 and 20102-F1901166-KZP).-
dc.language.isoen-
dc.publisherWILEY-
dc.rights2023 The International Biometric Society.-
dc.subject.otherBarnard test-
dc.subject.othercross-over-
dc.subject.otherepidermolysis bullosa simplex-
dc.subject.otherGEE-
dc.subject.othergeneralized pairwise comparison-
dc.subject.othermodel averaging-
dc.subject.othernon-parametric marginal model-
dc.subject.otherrare diseases-
dc.subject.otherrepeated measures-
dc.titleHow to analyze continuous and discrete repeated measures in small-sample cross-over trials?-
dc.typeJournal Contribution-
dc.identifier.epage4011-
dc.identifier.issue4-
dc.identifier.spage3998-
dc.identifier.volume79-
local.bibliographicCitation.jcatA1-
local.publisher.place111 RIVER ST, HOBOKEN 07030-5774, NJ-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.type.programmeH2020-
local.relation.h2020825575-
dc.identifier.doi10.1111/biom.13920-
dc.identifier.pmid37587671-
dc.identifier.isi001049312800001-
local.provider.typeWeb of Science-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.contributorVERBEECK, Johan-
item.contributorGeroldinger, M-
item.contributorThiel, K-
item.contributorHooker, AC-
item.contributorUeckert, S-
item.contributorKarlsson, M-
item.contributorBathke, AC-
item.contributorBauer, JW-
item.contributorMOLENBERGHS, Geert-
item.contributorZimmermann, G-
item.fullcitationVERBEECK, Johan; Geroldinger, M; Thiel, K; Hooker, AC; Ueckert, S; Karlsson, M; Bathke, AC; Bauer, JW; MOLENBERGHS, Geert & Zimmermann, G (2023) How to analyze continuous and discrete repeated measures in small-sample cross-over trials?. In: BIOMETRICS, 79 (4) , p. 3998 -4011.-
item.accessRightsOpen Access-
item.validationecoom 2024-
crisitem.journal.issn0006-341X-
crisitem.journal.eissn1541-0420-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.