Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/43295
Title: Multiderivative time integration methods preserving nonlinear functionals via relaxation
Authors: Ranocha, Hendrik
SCHUETZ, Jochen 
Issue Date: 2024
Publisher: MATHEMATICAL SCIENCE PUBL
Source: Communications in Applied Mathematics and Computational Science, 19 (1) , p. 27 -56
Abstract: We combine the recent relaxation approach with multiderivative Runge-Kutta methods to preserve conservation or dissipation of entropy functionals for ordinary and partial differential equations. Relaxation methods are minor modifications of explicit and implicit schemes, requiring only the solution of a single scalar equation per time step in addition to the baseline scheme. We demonstrate the robustness of the resulting methods for a range of test problems including the 3D compressible Euler equations. In particular, we point out improved error growth rates for certain entropy-conservative problems including nonlinear dispersive wave equations.
Notes: Ranocha, H (corresponding author), Johannes Gutenberg Univ Mainz, Inst Math, Mainz, Germany.
mail@ranocha.de; jochen.schuetz@uhasselt.be
Keywords: two-derivative methods;multiderivative methods;invariants;conservative systems;dissipative systems;structure-preserving methods AMS subject classification 65L06;65M20;65M70
Document URI: http://hdl.handle.net/1942/43295
ISSN: 1559-3940
e-ISSN: 2157-5452
DOI: 10.2140/camcos.2024.19.27
ISI #: 001273288300002
Rights: 2024 MSP (Mathematical Sciences Publishers).
Category: A1
Type: Journal Contribution
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
multiderivative_relaxation__arXiv.pdfNon Peer-reviewed author version1.12 MBAdobe PDFView/Open
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.