Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/43310
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAERTS, Marc-
dc.contributor.authorMOLENBERGHS, Geert-
dc.date.accessioned2024-07-01T08:45:29Z-
dc.date.available2024-07-01T08:45:29Z-
dc.date.issued2024-
dc.date.submitted2024-07-01T07:35:31Z-
dc.identifier.citationThe American statistician,-
dc.identifier.urihttp://hdl.handle.net/1942/43310-
dc.description.abstractSquared 2 x 2 tables with binary data from matched pairs are typically analyzed using Cochran-Mantel-Haenszel methodology, conditional logistic regression, or random intercepts logistic regression. These are all "pair-specific" type of approaches. However, many more methods and models for clustered binary data, including marginal models and marginalizable pair-specific models, can be applied. We provide a comprehensive overview of methods and apply them all to two well-known example datasets, the prime minister's performance and the myocardial infarction datasets. The simple setting of matched binary data allows us to compare and relate different models, methods and their estimates. A technical explanation is given for why in some settings boundary estimates are obtained. Supplementary materials for this article are available online.-
dc.description.sponsorshipAcknowledgments We thank the American Public Health Association and Sheridan Content Solutions for the kind permission to reproduce Table 2 (MI data) from Table 3 in Coulehan et al. (1986). We would also like to thank the editor and referees for very helpful feedback and suggestions. Any remaining errors are the responsibility of the authors-
dc.language.isoen-
dc.publisherTAYLOR & FRANCIS INC-
dc.rights2024 American Statistical Association-
dc.subject.otherBahadur model-
dc.subject.otherBinary clustered data-
dc.subject.otherGeneralized estimating equations-
dc.subject.otherLikelihood-
dc.subject.otherMarginal model-
dc.subject.otherMatched pair-
dc.subject.otherRandom effects-
dc.titleAnalyzing Matched 2 x 2 Tables from all Corners-
dc.typeJournal Contribution-
local.format.pages10-
local.bibliographicCitation.jcatA1-
dc.description.notesAerts, M (corresponding author), Hasselt Univ, I BioStat, Diepenbeek, Belgium.-
dc.description.notesmarc.aerts@uhasselt.be-
local.publisher.place530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.statusEarly view-
dc.identifier.doi10.1080/00031305.2024.2350452-
dc.identifier.isi001236482000001-
local.provider.typewosris-
local.description.affiliation[Aerts, Marc; Molenberghs, Geert] Hasselt Univ, I BioStat, Diepenbeek, Belgium.-
local.description.affiliation[Molenberghs, Geert] Univ Leuven, KU Leuven, I BioStat, Leuven, Belgium.-
local.uhasselt.internationalno-
item.accessRightsOpen Access-
item.fullcitationAERTS, Marc & MOLENBERGHS, Geert (2024) Analyzing Matched 2 x 2 Tables from all Corners. In: The American statistician,.-
item.validationecoom 2025-
item.contributorAERTS, Marc-
item.contributorMOLENBERGHS, Geert-
item.fulltextWith Fulltext-
crisitem.journal.issn0003-1305-
crisitem.journal.eissn1537-2731-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
output.dvi.pdfPeer-reviewed author version934.3 kBAdobe PDFView/Open
ACFrOgCoYdw_V7er-L1ok-YkXuAI3BKJCxGiHjZvLoxsm4aXJp1_yz9ZHuaZ.pdf
  Restricted Access
Published version1.21 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.