Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/44634
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVynck, Matthijs-
dc.contributor.authorTrypsteen, Wim-
dc.contributor.authorTHAS, Olivier-
dc.contributor.authorVandesompele, Jo-
dc.contributor.authorDe Spiegelaere, Ward-
dc.date.accessioned2024-11-08T08:58:26Z-
dc.date.available2024-11-08T08:58:26Z-
dc.date.issued2024-
dc.date.submitted2024-10-25T12:30:56Z-
dc.identifier.citationBriefings in Bioinformatics, 25 (6) (Art N° bbae507)-
dc.identifier.urihttp://hdl.handle.net/1942/44634-
dc.description.abstractDigital polymerase chain reaction (dPCR) is a best-in-class molecular biology technique for the accurate and precise quantification of nucleic acids. The recent maturation of dPCR technology allows the quantification of up to thousands of targeted nucleic acids per instrument per day. A key step in the dPCR data analysis workflow is the classification of partitions into two classes based on their partition intensities: partitions either containing or lacking target nucleic acids of interest. Much effort has been invested in the design and tailoring of automated dPCR partition classification procedures, and such procedures will be increasingly important as the technology ventures into high-throughput applications. However, automated partition classification is not fail-safe, and evaluation of its accuracy is highly advised. This accuracy evaluation is a manual endeavor and is becoming a bottleneck for high-throughput dPCR applications. Here, we introduce dipcensR, the first data-analysis procedure that automates the assessment of any linear partition classifier's partition classification accuracy, offering potentially substantial efficiency gains. dipcensR is based on a robustness evaluation of said partition classification and flags classifications with low robustness as needing review. Additionally, dipcensR's robustness analysis underpins (optional) automatic optimization of partition classification to achieve maximal robustness. A freely available R implementation supports dipcensR's use.-
dc.description.sponsorshipThis work was funded in part by research funding from Stilla Technologies to O.T. and W.D.S. and research funding from Flanders Innovation and Entrepreneurship to W.D.S. (VLAIO, grant HBC_2022.0673).-
dc.language.isoen-
dc.publisherOXFORD UNIV PRESS-
dc.rightsThe Author(s) 2024. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/ licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com-
dc.subject.otherdigital PCR-
dc.subject.otherthresholding-
dc.subject.otherpartition classification-
dc.subject.otheraccuracy-
dc.subject.othermultiplexing-
dc.titleDigital PCR threshold robustness analysis and optimization using dipcensR-
dc.typeJournal Contribution-
dc.identifier.issue6-
dc.identifier.volume25-
local.format.pages9-
local.bibliographicCitation.jcatA1-
dc.description.notesVynck, M; De Spiegelaere, W (corresponding author), Univ Ghent, Digital PCR Ctr, Salisburylaan 133,Entrance 78, B-9820 Merelbeke, Belgium.-
dc.description.notesmatthijs.vynck@ugent.be; wim.trypsteen@ugent.be;-
dc.description.notesOlivier.thas@Uhasselt.be; jo.vandesompele@ugent.be;-
dc.description.notesward.despiegelaere@ugent.be-
local.publisher.placeGREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnrbbae507-
dc.identifier.doi10.1093/bib/bbae507-
dc.identifier.pmid39400112-
dc.identifier.isi001330616900002-
dc.contributor.orcidDe Spiegelaere, Ward/0000-0003-2097-8439-
local.provider.typewosris-
local.description.affiliation[Vynck, Matthijs; Trypsteen, Wim; Thas, Olivier; Vandesompele, Jo; De Spiegelaere, Ward] Univ Ghent, Digital PCR Ctr DIGPCR, Ghent, Belgium.-
local.description.affiliation[Vynck, Matthijs; De Spiegelaere, Ward] Univ Ghent, Fac Vet Med, Dept Morphol Imaging Orthopaed Rehabil & Nutr, Ghent, Belgium.-
local.description.affiliation[Vynck, Matthijs; Trypsteen, Wim; Vandesompele, Jo; De Spiegelaere, Ward] Univ Ghent, Canc Res Inst Ghent, C Heymanslaan 10, B-9000 Ghent, Belgium.-
local.description.affiliation[Thas, Olivier] Univ Ghent, Dept Appl Math Comp Sci & Stat, Krijgslaan 281-S9, B-9000 Ghent, Belgium.-
local.description.affiliation[Thas, Olivier] Hasselt Univ, Data Sci Inst, Agoralaan Gebouw D, B-3590 Hasselt, Belgium.-
local.description.affiliation[Thas, Olivier] Univ Wollongong, Natl Inst Appl Stat Res Australia, Wollongong, NSW 2522, Australia.-
local.description.affiliation[Vandesompele, Jo] Univ Ghent, Dept Biomol Sci, C Heymanslaan 10, B-9000 Ghent, Belgium.-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.contributorVynck, Matthijs-
item.contributorTrypsteen, Wim-
item.contributorTHAS, Olivier-
item.contributorVandesompele, Jo-
item.contributorDe Spiegelaere, Ward-
item.fullcitationVynck, Matthijs; Trypsteen, Wim; THAS, Olivier; Vandesompele, Jo & De Spiegelaere, Ward (2024) Digital PCR threshold robustness analysis and optimization using dipcensR. In: Briefings in Bioinformatics, 25 (6) (Art N° bbae507).-
item.accessRightsOpen Access-
crisitem.journal.issn1467-5463-
crisitem.journal.eissn1477-4054-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Digital PCR threshold robustness analysis and optimization using dipcensR.pdfPublished version1.28 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.