Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/44827
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLAGHMOUCH, Manal-
dc.contributor.authorDEPAIRE, Benoit-
dc.contributor.authorJANS, Mieke-
dc.contributor.editorLu, X.-
dc.contributor.editorPufahl, L-
dc.contributor.editorSong, M.-
dc.date.accessioned2024-12-10T12:05:28Z-
dc.date.available2024-12-10T12:05:28Z-
dc.date.issued2024-
dc.date.submitted2024-12-04T14:08:48Z-
dc.identifier.citation2024 6th International Conference on Process Mining, ICPM, IEEE, p. 49 -56-
dc.identifier.isbn979-8-3503-6503-0-
dc.identifier.urihttp://hdl.handle.net/1942/44827-
dc.description.abstractConformance checking allows auditors to detect process deviations automatically, resulting in numerous deviations, with only a few being relevant. Identifying notable items amidst this large data set is challenging. Machine learning techniques offer potential solutions, but questions about the required number of labeled deviations and the impact of label quality remain. Our study investigates these factors' effects on Decision Trees and Random Forests. Results demonstrate these models' effectiveness in identifying notable items within imbalanced deviation populations. Achieving 90% precision and recall is feasible with about 400 to 600 labeled deviations, depending on the notable items' population fraction. A higher fraction of notables reduces the required labeled deviations. Varying label quality produced similar results. Additionally, classifications identifying at least 90% notable items are linked to less complex processes.-
dc.description.sponsorshipManal Laghmouch thanks Research Foundation Flanders for the SB PhD fellowship (1S40622N) supporting this research.-
dc.language.isoen-
dc.publisherIEEE-
dc.rightsIEEE Xplore-
dc.subject.otherAuditing-
dc.subject.otherConformance Checking-
dc.subject.otherDeviation Classification-
dc.subject.otherMachine Learning-
dc.subject.otherNotable Item-
dc.subject.otherProcess Deviation-
dc.subject.otherProcess Mining-
dc.titleTowards Full Population Testing in Auditing: How Many Process Deviations Should Be Labeled?-
dc.typeProceedings Paper-
local.bibliographicCitation.conferencedate2024, October 14-18-
local.bibliographicCitation.conferencename6th International Conference on Process Mining (ICPM)-
local.bibliographicCitation.conferenceplaceKgs Lyngby, DENMARK-
dc.identifier.epage56-
dc.identifier.spage49-
local.format.pages8-
local.bibliographicCitation.jcatC1-
local.publisher.place345 E 47TH ST, NEW YORK, NY 10017 USA-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
dc.identifier.doi10.1109/ICPM63005.2024.10680672-
dc.identifier.isi001329238200008-
local.provider.typewosris-
local.bibliographicCitation.btitle2024 6th International Conference on Process Mining, ICPM-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.contributorLAGHMOUCH, Manal-
item.contributorDEPAIRE, Benoit-
item.contributorJANS, Mieke-
item.contributorLu, X.-
item.contributorPufahl, L-
item.contributorSong, M.-
item.fullcitationLAGHMOUCH, Manal; DEPAIRE, Benoit & JANS, Mieke (2024) Towards Full Population Testing in Auditing: How Many Process Deviations Should Be Labeled?. In: 2024 6th International Conference on Process Mining, ICPM, IEEE, p. 49 -56.-
item.accessRightsOpen Access-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Towards Full Population Testing in Auditing_ How Many Process Deviations Should Be Labeled_.pdf
  Restricted Access
Published version507.64 kBAdobe PDFView/Open    Request a copy
CR_43.pdfPeer-reviewed author version489.31 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.