Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/44873
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGRESSANI, Oswaldo-
dc.contributor.authorTORNERI, Andrea-
dc.contributor.authorHENS, Niel-
dc.contributor.authorFAES, Christel-
dc.date.accessioned2024-12-18T11:49:33Z-
dc.date.available2024-12-18T11:49:33Z-
dc.date.issued2024-
dc.date.submitted2024-12-06T14:25:36Z-
dc.identifier.citationAmerican journal of epidemiology,-
dc.identifier.urihttp://hdl.handle.net/1942/44873-
dc.description.abstractThe incubation period is of paramount importance in infectious disease epidemiology as it informs about the transmission potential of a pathogenic organism and helps the planning of public health strategies to keep an epidemic outbreak under control. Estimation of the incubation period distribution from reported exposure times and symptom onset times is challenging as the underlying data is coarse. We developed a new Bayesian methodology using Laplacian-P-splines that provides a semiparametric estimation of the incubation density based on a Langevinized Gibbs sampler. A finite mixture density smoother informs a set of parametric distributions via moment matching and an information criterion arbitrates between competing candidates. Algorithms underlying our method find a natural nest within the EpiLPS package, which has been extended to cover estimation of incubation times. Various simulation scenarios accounting for different levels of data coarseness are considered with encouraging results. Applications to real data on coronavirus disease 2019, Middle East respiratory syndrome, and Mpox reveal results that are in alignment with what has been obtained in recent studies. The proposed flexible approach is an interesting alternative to classic Bayesian parametric methods for estimation of the incubation distribution.-
dc.description.sponsorshipFunding This work was supported by the ESCAPE project (101095619) and the VERDI project (101045989), funded by the European Union. Acknowledgments We thank Jantien Backer and Jacco Wallinga from the National Institute for Public Health and the Environment (RIVM) for discussing their results on the COVID-19 incubation period estimation based on confirmed cases with Wuhan travel history-
dc.language.isoen-
dc.publisherOXFORD UNIV PRESS INC-
dc.rightsThe Author(s) 2024. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.-
dc.subject.otherincubation period-
dc.subject.otherLaplace approximation-
dc.subject.otherBayesian P-splines-
dc.subject.otherMCMC-
dc.titleFlexible Bayesian estimation of incubation times-
dc.typeJournal Contribution-
local.format.pages12-
local.bibliographicCitation.jcatA1-
dc.description.notesGressani, O (corresponding author), Campus Diepenbeek,Gebouw D,Agoralaan, BE-3590 Diepenbeek, Belgium.-
dc.description.notesoswaldo.gressani@uhasselt.be; andrea.torneri@uhasselt.be;-
dc.description.notesniel.hens@uhasselt.be; christel.faes@uhasselt.be-
local.publisher.placeJOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.statusEarly view-
dc.identifier.doi10.1093/aje/kwae192-
dc.identifier.pmid38988237-
dc.identifier.isi001363088600001-
dc.contributor.orcidGressani, Oswaldo/0000-0003-4152-6159-
local.provider.typewosris-
local.description.affiliation[Gressani, Oswaldo; Torneri, Andrea; Hens, Niel; Faes, Christel] Hasselt Univ, Interuniv Inst Biostat & Stat Bioinformat I BioSta, Data Sci Inst, BE-3500 Hasselt, Belgium.-
local.description.affiliation[Hens, Niel] Univ Antwerp, Ctr Hlth Econ Res & Modelling Infect Dis, Vaxinfectio, BE-2000 Antwerp, Belgium.-
local.uhasselt.internationalno-
item.contributorGRESSANI, Oswaldo-
item.contributorTORNERI, Andrea-
item.contributorHENS, Niel-
item.contributorFAES, Christel-
item.fullcitationGRESSANI, Oswaldo; TORNERI, Andrea; HENS, Niel & FAES, Christel (2024) Flexible Bayesian estimation of incubation times. In: American journal of epidemiology,.-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
crisitem.journal.issn0002-9262-
crisitem.journal.eissn1476-6256-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Flexible Bayesian estimation of incubation times.pdfEarly view4.05 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.