Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/44890
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kleijnen, Jack P. C. | - |
dc.contributor.author | Angun, Ebru | - |
dc.contributor.author | VAN NIEUWENHUYSE, Inneke | - |
dc.contributor.author | van Beers, Wim C. M. | - |
dc.date.accessioned | 2024-12-20T07:57:51Z | - |
dc.date.available | 2024-12-20T07:57:51Z | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-12-17T13:26:01Z | - |
dc.identifier.citation | Journal of Global Optimization, 91 (4), 897-922 | - |
dc.identifier.uri | http://hdl.handle.net/1942/44890 | - |
dc.description.abstract | We develop a novel methodology for solving constrained optimization problems in deterministic simulation. In these problems, the goal (or objective) output is to be minimized, subject to one or more constraints for the other outputs and for the inputs. Our methododology combines the"Karush-Kuhn-Tucker"(KKT) conditions with"efficient global optimization"(EGO).These KKT conditions are well-known first-order necessary optimality conditions in white-box mathematical optimization, but our method is the first EGO method that uses these conditions. EGO is a popular type of algorithm that is closely related to"Bayesian optimization" and"active machine learning", as they all use Gaussian processes or Kriging to approximate the input/output behavior of black-box models. We numerically compare the performance of our KKT-EGO algorithm and two alternative EGO algorithms, in several popular examples. In some examples our algorithm converges faster to the true optimum, so our algorithm may provide a suitable alternative. | - |
dc.description.sponsorship | We thank the two anonymous reviewers for their very useful comments on a previous version. We also thank the following colleagues for their help with previous versions: Roymel Carpio (Universidade Federal do Rio de Janeiro (UFRJ), Brazil), Tony Pourmohamad (Genentech, Inc.), and Tianzeng Tao (Dalian University of Technology, China). Furthermore, we thank Dick den Hertog (University of Amsterdam) for clarifying the KKT conditions. This research was supported by the Flanders Artificial Intelligence Research Program (FLAIR). | - |
dc.language.iso | en | - |
dc.publisher | SPRINGER | - |
dc.rights | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 | - |
dc.subject.other | Karush-Kuhn-Tucker conditions | - |
dc.subject.other | Efficient global optimization | - |
dc.subject.other | Bayesian optimization | - |
dc.subject.other | Machine learning | - |
dc.subject.other | Kriging | - |
dc.subject.other | Gaussian process | - |
dc.title | Constrained optimization in simulation: efficient global optimization and Karush-Kuhn-Tucker conditions | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 922 | - |
dc.identifier.issue | 4 | - |
dc.identifier.spage | 897 | - |
dc.identifier.volume | 91 | - |
local.format.pages | 26 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | Kleijnen, JPC (corresponding author), Tilburg Univ TiU, Dept Management, Tilburg, Netherlands. | - |
dc.description.notes | kleijnen@tilburguniversity.edu; eangun@gsu.edu.tr; | - |
dc.description.notes | inneke.vannieuwenhuyse@uhasselt.be | - |
local.publisher.place | VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.identifier.doi | 10.1007/s10898-024-01448-3 | - |
dc.identifier.isi | 001366651600001 | - |
dc.contributor.orcid | Kleijnen, jack/0000-0001-8413-2366 | - |
local.provider.type | wosris | - |
local.description.affiliation | [Kleijnen, Jack P. C.] Tilburg Univ TiU, Dept Management, Tilburg, Netherlands. | - |
local.description.affiliation | [Angun, Ebru] Galatasaray Univ, Ind Engn Dept, Istanbul, Turkiye. | - |
local.description.affiliation | [van Nieuwenhuyse, Inneke] Hasselt Univ, FlandersMake UHasselt, Hasselt, Belgium. | - |
local.description.affiliation | [van Nieuwenhuyse, Inneke; van Beers, Wim C. M.] Hasselt Univ, Data Sci Inst, Hasselt, Belgium. | - |
local.uhasselt.international | yes | - |
item.fulltext | With Fulltext | - |
item.fullcitation | Kleijnen, Jack P. C.; Angun, Ebru; VAN NIEUWENHUYSE, Inneke & van Beers, Wim C. M. (2024) Constrained optimization in simulation: efficient global optimization and Karush-Kuhn-Tucker conditions. In: Journal of Global Optimization, 91 (4), 897-922. | - |
item.accessRights | Open Access | - |
item.contributor | Kleijnen, Jack P. C. | - |
item.contributor | Angun, Ebru | - |
item.contributor | VAN NIEUWENHUYSE, Inneke | - |
item.contributor | van Beers, Wim C. M. | - |
crisitem.journal.issn | 0925-5001 | - |
crisitem.journal.eissn | 1573-2916 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
s10898-024-01448-3.pdf Restricted Access | Early view | 2.02 MB | Adobe PDF | View/Open Request a copy |
source_latex_JOGO_D_23_00438_R1 (1).pdf | Peer-reviewed author version | 1.46 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.