Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/44999
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVAN DER ELST, Wim-
dc.contributor.authorONG, Fenny-
dc.contributor.authorStijven, Florian-
dc.contributor.authorAbad, Ariel Alonso-
dc.contributor.authorVAN KEILEGOM, Ingrid-
dc.contributor.authorGEYS, Helena-
dc.contributor.authorEisele, Lewin-
dc.contributor.authorMOLENBERGHS, Geert-
dc.date.accessioned2025-01-08T12:01:07Z-
dc.date.available2025-01-08T12:01:07Z-
dc.date.issued2024-
dc.date.submitted2025-01-07T13:52:55Z-
dc.identifier.citationStatistics in biopharmaceutical research,-
dc.identifier.issn1946-6315-
dc.identifier.urihttp://hdl.handle.net/1942/44999-
dc.description.abstractThe identification of good surrogate endpoints is a challenging endeavor. This may, at least partially, be attributable to the fact that most researchers have focused on the identification of a single surrogate endpoint. It is thus implicitly assumed that the treatment effect on the true endpoint (T) can be accurately predicted based on the treatment effect on one surrogate endpoint (S) only. Given the complex nature of many diseases and the different therapeutic pathways in which a treatment can impact T, this assumption may be too optimistic. For example, in oncology, the effect of a treatment often depends on both the treatment's efficacy and its toxicity. In the present article, the meta-analytic framework of? is extended to the setting where multiple S are considered. To cope with potential model convergence issues that often arise in a meta-analytic framework, several simplified model fitting strategies are proposed. Further, simulation studies are conducted to evaluate the properties of the estimated surrogacy metrics, and the new methodology is applied on a case study in schizophrenia. An online Appendix that details how the analyses can be conducted in practice (using the R package Surrogate) is also provided.-
dc.description.sponsorshipFenny Ong gratefully acknowledges the support from the Special Research Fund (BOF) of Hasselt University (BOF-number: BOF2OCPO3) and GlaxoSmithKline Biologicals for this study. Florian Stijven gratefully acknowledges the support from Baekeland Mandaat (HBC.2022.0145) and Johnson & Johnson Innovative Medicine.-
dc.language.isoen-
dc.publisherTAYLOR & FRANCIS INC-
dc.rights2024 American Statistical Association-
dc.subject.otherIndividual-level surrogacy-
dc.subject.otherMeta-analytic framework-
dc.subject.otherMultiple surrogate endpoints-
dc.subject.otherTrial-level surrogacy-
dc.subject.otherTwo-stage approach-
dc.titleMultiple Surrogates in the Meta-Analytic Setting for Normally Distributed Endpoints-
dc.typeJournal Contribution-
local.format.pages12-
local.bibliographicCitation.jcatA1-
dc.description.notesvan der Elst, W (corresponding author), Johnson & Johnson, Innovat Med, Turnhoutseweg 30, B-2340 Beerse, Belgium.-
dc.description.noteswim.vanderelst@gmail.com-
local.publisher.place530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.statusEarly view-
dc.identifier.doi10.1080/19466315.2024.2429387-
dc.identifier.isi001382084700001-
dc.identifier.eissn1946-6315-
dc.identifier.eissn1946-6315-
local.provider.typewosris-
local.description.affiliation[van der Elst, Wim; Geys, Helena; Eisele, Lewin] Johnson & Johnson, Innovat Med, Turnhoutseweg 30, B-2340 Beerse, Belgium.-
local.description.affiliation[Ong, Fenny; Molenberghs, Geert] UHasselt, I Biostat, Hasselt, Belgium.-
local.description.affiliation[Stijven, Florian; Abad, Ariel Alonso; Molenberghs, Geert] Katholieke Univ Leuven, I Biostat, Leuven, Belgium.-
local.description.affiliation[Van Keilegom, Ingrid] Katholieke Univ Leuven, ORSTAT, Leuven, Belgium.-
local.uhasselt.internationalno-
item.fulltextWith Fulltext-
item.contributorVAN DER ELST, Wim-
item.contributorONG, Fenny-
item.contributorStijven, Florian-
item.contributorAbad, Ariel Alonso-
item.contributorVAN KEILEGOM, Ingrid-
item.contributorGEYS, Helena-
item.contributorEisele, Lewin-
item.contributorMOLENBERGHS, Geert-
item.fullcitationVAN DER ELST, Wim; ONG, Fenny; Stijven, Florian; Abad, Ariel Alonso; VAN KEILEGOM, Ingrid; GEYS, Helena; Eisele, Lewin & MOLENBERGHS, Geert (2024) Multiple Surrogates in the Meta-Analytic Setting for Normally Distributed Endpoints. In: Statistics in biopharmaceutical research,.-
item.accessRightsOpen Access-
crisitem.journal.issn1946-6315-
crisitem.journal.eissn1946-6315-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
710.pdf
  Restricted Access
Early view1.82 MBAdobe PDFView/Open    Request a copy
ACFrOgCv.pdfPeer-reviewed author version563.95 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.