Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/45029
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | LIMPOCO, Marie Analiz April | - |
dc.contributor.author | FAES, Christel | - |
dc.contributor.author | HENS, Niel | - |
dc.date.accessioned | 2025-01-09T12:35:55Z | - |
dc.date.available | 2025-01-09T12:35:55Z | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-12-23T15:33:09Z | - |
dc.identifier.citation | Statistics in Medicine, 44 (1-2) (Art N° e10300) | - |
dc.identifier.issn | 0277-6715 | - |
dc.identifier.uri | http://hdl.handle.net/1942/45029 | - |
dc.description.abstract | In medical research, individual-level patient data provide invaluable information, but the patients' right to confidentiality remains of utmost priority. This poses a huge challenge when estimating statistical models such as a linear mixed model, which is an extension of linear regression models that can account for potential heterogeneity whenever data come from different data providers. Federated learning tackles this hurdle by estimating parameters without retrieving individual-level data. Instead, iterative communication of parameter estimate updates between the data providers and analysts is required. In this article, we propose an alternative framework to federated learning for fitting linear mixed models. Specifically, our approach only requires the mean, covariance, and sample size of multiple covariates from different data providers once. Using the principle of statistical sufficiency within the likelihood framework as theoretical support, this proposed strategy achieves estimates identical to those derived from actual individual-level data. We demonstrate this approach through real data on 15 068 patient records from 70 clinics at the Children's Hospital of Pennsylvania. Assuming that each clinic only shares summary statistics once, we model the COVID-19 polymerase chain reaction test cycle threshold as a function of patient information. Simplicity, communication efficiency, generalisability, and wider scope of implementation in any statistical software distinguish our approach from existing strategies in the literature. | - |
dc.description.sponsorship | Special Research Fund of Hasselt University [BOF24OWB22] | - |
dc.language.iso | en | - |
dc.publisher | WILEY | - |
dc.rights | 2024 John Wiley & Sons Ltd. | - |
dc.subject.other | aggregated data | - |
dc.subject.other | data privacy | - |
dc.subject.other | federated learning | - |
dc.subject.other | linear mixed model | - |
dc.subject.other | sufficiency principle | - |
dc.subject.other | summary statistics | - |
dc.title | Linear Mixed Modeling of Federated Data When Only the Mean, Covariance, and Sample Size Are Available | - |
dc.type | Journal Contribution | - |
dc.identifier.issue | 1-2 | - |
dc.identifier.volume | 44 | - |
local.format.pages | 13 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | Limpoco, MAA (corresponding author), Hasselt Univ, Interuniv Inst Biostat & Stat Bioinformat I BioSta, Data Sci Inst DSI, Hasselt, Belgium. | - |
dc.description.notes | liz.limpoco@uhasselt.be | - |
local.publisher.place | 111 RIVER ST, HOBOKEN 07030-5774, NJ USA | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
local.bibliographicCitation.artnr | e10300 | - |
dc.identifier.doi | 10.1002/sim.10300 | - |
dc.identifier.pmid | 39663139 | - |
dc.identifier.isi | 001374591100001 | - |
dc.identifier.eissn | 1097-0258 | - |
dc.identifier.eissn | 1097-0258 | - |
local.provider.type | wosris | - |
local.description.affiliation | [Limpoco, Marie Analiz April; Faes, Christel; Hens, Niel] Hasselt Univ, Interuniv Inst Biostat & Stat Bioinformat I BioSta, Data Sci Inst DSI, Hasselt, Belgium. | - |
local.description.affiliation | [Hens, Niel] Antwerp Univ, Vaccine & Infect Dis Inst, Ctr Hlth Econ Res & Modelling Infect Dis CHERMID, Antwerp, Belgium. | - |
local.uhasselt.international | no | - |
item.contributor | LIMPOCO, Marie Analiz April | - |
item.contributor | FAES, Christel | - |
item.contributor | HENS, Niel | - |
item.fullcitation | LIMPOCO, Marie Analiz April; FAES, Christel & HENS, Niel (2024) Linear Mixed Modeling of Federated Data When Only the Mean, Covariance, and Sample Size Are Available. In: Statistics in Medicine, 44 (1-2) (Art N° e10300). | - |
item.fulltext | With Fulltext | - |
item.accessRights | Open Access | - |
crisitem.journal.issn | 0277-6715 | - |
crisitem.journal.eissn | 1097-0258 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Statistics in Medicine - 2024 - Limpoco - Linear Mixed Modeling of Federated Data When Only the Mean Covariance and.pdf Restricted Access | Published version | 1.09 MB | Adobe PDF | View/Open Request a copy |
ACFrOgCooE2kGFjmMoOVs3AQRbg.pdf | Peer-reviewed author version | 542 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.