Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/45182
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCONCEPCION PEREZ, Leonardo-
dc.contributor.authorNAPOLES RUIZ, Gonzalo-
dc.contributor.authorJastrzebska, Agnieszka-
dc.contributor.authorGrau, Isel-
dc.contributor.authorSalgueiro, Yamisleydi-
dc.date.accessioned2025-01-28T08:10:54Z-
dc.date.available2025-01-28T08:10:54Z-
dc.date.issued2025-
dc.date.submitted2025-01-27T15:42:24Z-
dc.identifier.citationApplied soft computing, 169 (Art N° 112604)-
dc.identifier.urihttp://hdl.handle.net/1942/45182-
dc.description.abstractQuasi-Nonlinear Fuzzy Cognitive Maps (q-FCMs) generalize the classic Fuzzy Cognitive Maps (FCMs) by incorporating a nonlinearity coefficient that is related to the model's convergence. While q-FCMs can be configured to avoid unique fixed-point attractors, there is still limited knowledge of their dynamic behavior. In this paper, we propose two iterative, mathematically-driven algorithms that allow estimating the limit state space of any q-FCM model. These algorithms produce accurate lower and upper bounds for the activation values of neural concepts in each iteration without using any information about the initial conditions. Asa result, we can determine which activation values will never be produced by a neural concept regardless of the initial conditions used to perform the simulations. In addition, these algorithms could help determine whether a classic FCM model will converge to a unique fixed-point attractor. As a second contribution, we demonstrate that the covering of neural concepts decreases as the nonlinearity coefficient approaches its maximal value. However, large covering values do not necessarily translate into better approximation capabilities, especially in the case of nonlinear problems. This finding points to a trade-off between the model's nonlinearity and the number of reachable states.-
dc.description.sponsorshipY. Salgueiro would like to acknowledge the support provided by ANID Fondecyt Regular 1240293 and the super-computing infrastructure of the NLHPC (ECM-02). L. Concepción was supported by the Special Research Fund, Belgium (BOF20BL04) from UHasselt, Belgium. Similarly, G. Nápoles would like to acknowledge to support received from the Special Research Fund, Belgium (BOF24KV18) from UHasselt, Belgium.-
dc.language.isoen-
dc.publisherELSEVIER-
dc.rights2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.-
dc.subject.otherFuzzy Cognitive Maps-
dc.subject.otherRecurrent neural networks-
dc.subject.otherModeling and simulation-
dc.subject.otherConvergence analysis-
dc.titleEstimating the limit state space of quasi-nonlinear Fuzzy Cognitive Maps-
dc.typeJournal Contribution-
dc.identifier.volume169-
local.format.pages13-
local.bibliographicCitation.jcatA1-
dc.description.notesSalgueiro, Y (corresponding author), Univ Talca, Fac Engn, Dept Ind Technol, Campus Curico, Talca, Chile.-
dc.description.notesysalgueiro@utalca.cl-
local.publisher.placeRADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr112604-
dc.identifier.doi10.1016/j.asoc.2024.112604-
dc.identifier.isi001394690600001-
local.provider.typewosris-
local.description.affiliation[Concepcion, Leonardo; Napoles, Gonzalo] UHasselt, Business Informat Res Grp, Hasselt, Belgium.-
local.description.affiliation[Concepcion, Leonardo] Univ Cent Las Villas, Santa Clara, Cuba.-
local.description.affiliation[Napoles, Gonzalo] Tilburg Univ, Dept Cognit Sci & Artificial Intelligence, Tilburg, Netherlands.-
local.description.affiliation[Jastrzebska, Agnieszka] Warsaw Univ Technol, Fac Math & Informat Sci, Warsaw, Poland.-
local.description.affiliation[Grau, Isel] Eindhoven Univ Technol, Informat Syst Grp, Eindhoven, Netherlands.-
local.description.affiliation[Salgueiro, Yamisleydi] Univ Talca, Fac Engn, Dept Ind Technol, Campus Curico, Talca, Chile.-
local.uhasselt.internationalyes-
item.contributorCONCEPCION PEREZ, Leonardo-
item.contributorNAPOLES RUIZ, Gonzalo-
item.contributorJastrzebska, Agnieszka-
item.contributorGrau, Isel-
item.contributorSalgueiro, Yamisleydi-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.fullcitationCONCEPCION PEREZ, Leonardo; NAPOLES RUIZ, Gonzalo; Jastrzebska, Agnieszka; Grau, Isel & Salgueiro, Yamisleydi (2025) Estimating the limit state space of quasi-nonlinear Fuzzy Cognitive Maps. In: Applied soft computing, 169 (Art N° 112604).-
crisitem.journal.issn1568-4946-
crisitem.journal.eissn1872-9681-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Estimating the limit state space of quasi-nonlinear Fuzzy Cognitive Maps.pdf
  Restricted Access
Published version1.04 MBAdobe PDFView/Open    Request a copy
ACFrOg.pdfPeer-reviewed author version942.21 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.