Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/45255
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAMINI, Sasan-
dc.contributor.authorVAN NIEUWENHUYSE, Inneke-
dc.contributor.authorMORALES HERNANDEZ, Alejandro-
dc.date.accessioned2025-02-10T10:36:35Z-
dc.date.available2025-02-10T10:36:35Z-
dc.date.issued2025-
dc.date.submitted2025-01-21T13:59:51Z-
dc.identifier.citationIEEE access, 13 , p. 1581 -1593-
dc.identifier.issn2169-3536-
dc.identifier.urihttp://hdl.handle.net/1942/45255-
dc.description.abstractBayesian optimization is a sequential optimization method that is particularly well suited for problems with limited computational budgets involving expensive and non-convex black-box functions. Though it has been widely used to solve various optimization tasks, most of the literature has focused on unconstrained settings, while many real-world problems are characterized by constraints. This paper reviews the current literature on single-objective constrained Bayesian optimization, classifying it according to three main algorithmic aspects: (i) the metamodel, (ii) the acquisition function, and (iii) the identification procedure. We discuss the current methods in each of these categories and conclude by a discussion of real-world applications and highlighting the main shortcomings in the literature, providing some promising directions for future research.-
dc.description.sponsorshipThis work was supported by the Flanders Artificial Intelligence Research Program (FAIR-2).-
dc.language.isoen-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.rights2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/-
dc.subject.otherOptimization-
dc.subject.otherBayes methods-
dc.subject.otherReviews-
dc.subject.otherClosed box-
dc.subject.otherNoise-
dc.subject.otherUncertainty-
dc.subject.otherNoise measurement-
dc.subject.otherLinear programming-
dc.subject.otherThree-dimensional displays-
dc.subject.otherSurveys-
dc.subject.otherBayesian optimization-
dc.subject.otherconstrained optimization-
dc.subject.otherexpensive black-box functions-
dc.subject.otherGaussian processes-
dc.titleConstrained Bayesian Optimization: A Review-
dc.typeJournal Contribution-
dc.identifier.epage1593-
dc.identifier.spage1581-
dc.identifier.volume13-
local.format.pages13-
local.bibliographicCitation.jcatA1-
dc.description.notesAmini, S (corresponding author), Hasselt Univ, Flanders Make UHasselt, B-3590 Diepenbeek, Belgium.; Amini, S (corresponding author), Hasselt Univ, Data Sci Inst, B-3590 Diepenbeek, Belgium.-
dc.description.notessasan.amini@uhasselt.be-
local.publisher.place445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA-
local.type.refereedRefereed-
local.type.specifiedReview-
dc.identifier.doi10.1109/access.2024.3522876-
dc.identifier.isi001389554800009-
dc.identifier.eissn2169-3536-
local.provider.typewosris-
local.description.affiliation[Amini, Sasan; Vannieuwenhuyse, Inneke] Hasselt Univ, Flanders Make UHasselt, B-3590 Diepenbeek, Belgium.-
local.description.affiliation[Amini, Sasan; Vannieuwenhuyse, Inneke] Hasselt Univ, Data Sci Inst, B-3590 Diepenbeek, Belgium.-
local.description.affiliation[Amini, Sasan; Vannieuwenhuyse, Inneke] UHasselt, Fac Sci, Computat Math Res Grp, B-3590 Diepenbeek, Belgium.-
local.description.affiliation[Morales-Hernandez, Alejandro] Univ Libre Bruxelles, Fac Sci, Machine Learning Grp, B-1050 Brussels, Belgium.-
local.uhasselt.internationalno-
item.fulltextWith Fulltext-
item.contributorAMINI, Sasan-
item.contributorVAN NIEUWENHUYSE, Inneke-
item.contributorMORALES HERNANDEZ, Alejandro-
item.fullcitationAMINI, Sasan; VAN NIEUWENHUYSE, Inneke & MORALES HERNANDEZ, Alejandro (2025) Constrained Bayesian Optimization: A Review. In: IEEE access, 13 , p. 1581 -1593.-
item.accessRightsOpen Access-
crisitem.journal.issn2169-3536-
crisitem.journal.eissn2169-3536-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Constrained Bayesian Optimization_ A Review.pdfPublished version2.06 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.