Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/45303
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRAEDSCHELDERS, Theo-
dc.contributor.authorRizzardo, A-
dc.contributor.authorVAN DEN BERGH, Michel-
dc.date.accessioned2025-02-14T12:15:08Z-
dc.date.available2025-02-14T12:15:08Z-
dc.date.issued2022-
dc.date.submitted2025-02-14T12:13:54Z-
dc.identifier.citationCompositio Mathematica, 158 (6) , p. 1254 -1267-
dc.identifier.urihttp://hdl.handle.net/1942/45303-
dc.description.abstractA celebrated result by Orlov states that any fully faithful exact functor between the bounded derived categories of coherent sheaves on smooth projective varieties is of geometric origin, i.e. it is a Fourier-Mukai functor. In this paper we prove that any smooth projective variety of dimension ≥ 3 equipped with a tilting bundle can serve as the source variety of a non-Fourier-Mukai functor between smooth projective schemes.-
dc.language.isoen-
dc.publisher-
dc.subject.otherFourier-Mukai functor-
dc.subject.otherOrlov's theorem-
dc.titleNew examples of non-Fourier-Mukai functors-
dc.typeJournal Contribution-
dc.identifier.epage1267-
dc.identifier.issue6-
dc.identifier.spage1254-
dc.identifier.volume158-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1112/s0010437x22007540-
dc.identifier.isi000839454200001-
local.provider.typeWeb of Science-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.contributorRAEDSCHELDERS, Theo-
item.contributorRizzardo, A-
item.contributorVAN DEN BERGH, Michel-
item.fullcitationRAEDSCHELDERS, Theo; Rizzardo, A & VAN DEN BERGH, Michel (2022) New examples of non-Fourier-Mukai functors. In: Compositio Mathematica, 158 (6) , p. 1254 -1267.-
item.accessRightsOpen Access-
crisitem.journal.issn0010-437X-
crisitem.journal.eissn1570-5846-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
new-examples-of-non-fourier-mukai-functors.pdfPublished version469.12 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.