Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/45433
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGong, YC-
dc.contributor.authorJimenez-Arguijo, A-
dc.contributor.authorMedaille, AG-
dc.contributor.authorMoser, S-
dc.contributor.authorBasak, A-
dc.contributor.authorSCAFFIDI, Romain-
dc.contributor.authorCarron, R-
dc.contributor.authorFlandre, D-
dc.contributor.authorVERMANG, Bart-
dc.contributor.authorGiraldo, S-
dc.contributor.authorXin, H-
dc.contributor.authorPerez-Rodriguez, A-
dc.contributor.authorSaucedo, E-
dc.date.accessioned2025-02-26T10:45:24Z-
dc.date.available2025-02-26T10:45:24Z-
dc.date.issued2024-
dc.date.submitted2025-02-14T15:09:52Z-
dc.identifier.citationAdvanced functional materials, 34 (42) (Art N° 2404669)-
dc.identifier.urihttp://hdl.handle.net/1942/45433-
dc.description.abstractKesterite photovoltaic technologies are critical for the deployment of light-harvesting devices in buildings and products, enabling energy sustainable buildings, and households. The recent improvements in kesterite power conversion efficiencies have focused on improving solution-based precursors by improving the material phase purity, grain quality, and grain boundaries with many extrinsic doping and alloying agents (Ag, Cd, Ge…). The reported progress for solution-based precursors has been achieved due to a grain growth in more electronically intrinsic conditions. However, the kesterite device performance is dependent on the majority carrier density and sub-optimal carrier concentrations of 10 14-10 15 cm −3 have been consistently reported. Increasing the majority carrier density by one order of magnitude would increase the efficiency ceiling of kesterite solar cells, making the 20% target much more realistic. In this work, LiClO 4 is introduced as a highly soluble and highly thermally stable Li precursor salt which leads to optimal (>10 16 cm −3) carrier concentration without a significant impact in other relevant optoelectronic properties. The findings presented in this work demonstrate that the interplay between Li-doping and Ag-alloying enables a reproducible and statistically significant improvement in the device performance leading to efficiencies up to 14.1%.-
dc.language.isoen-
dc.publisher-
dc.subject.otherCu2ZnSn(S,Se)4-
dc.subject.otherCZTSSe-
dc.subject.otherkesterite solar cells-
dc.subject.othermolecular inks route-
dc.subject.otherthin film chalcogenides-
dc.titleLi-Doping and Ag-Alloying Interplay Shows the Pathway for Kesterite Solar Cells with Efficiency Over 14%-
dc.typeJournal Contribution-
dc.identifier.issue42-
dc.identifier.volume34-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr2404669-
local.type.programmeH2020-
local.relation.h2020952982, 866018-
dc.identifier.doi10.1002/adfm.202404669-
dc.identifier.isiWOS:001241163800001-
local.provider.typeWeb of Science-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.fullcitationGong, YC; Jimenez-Arguijo, A; Medaille, AG; Moser, S; Basak, A; SCAFFIDI, Romain; Carron, R; Flandre, D; VERMANG, Bart; Giraldo, S; Xin, H; Perez-Rodriguez, A & Saucedo, E (2024) Li-Doping and Ag-Alloying Interplay Shows the Pathway for Kesterite Solar Cells with Efficiency Over 14%. In: Advanced functional materials, 34 (42) (Art N° 2404669).-
item.contributorGong, YC-
item.contributorJimenez-Arguijo, A-
item.contributorMedaille, AG-
item.contributorMoser, S-
item.contributorBasak, A-
item.contributorSCAFFIDI, Romain-
item.contributorCarron, R-
item.contributorFlandre, D-
item.contributorVERMANG, Bart-
item.contributorGiraldo, S-
item.contributorXin, H-
item.contributorPerez-Rodriguez, A-
item.contributorSaucedo, E-
item.accessRightsOpen Access-
crisitem.journal.issn1616-301X-
crisitem.journal.eissn1616-3028-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.