Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/45569
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJin, Chunjiang-
dc.contributor.authorGuo, Fengjiao-
dc.contributor.authorMi, Hongyu-
dc.contributor.authorYANG, Nianjun-
dc.contributor.authorYang, Congcong-
dc.contributor.authorChang, Xiaqing-
dc.contributor.authorQiu, Jieshan-
dc.date.accessioned2025-03-10T12:28:10Z-
dc.date.available2025-03-10T12:28:10Z-
dc.date.issued2025-
dc.date.submitted2025-03-06T14:25:45Z-
dc.identifier.citationCarbon Energy,-
dc.identifier.issn-
dc.identifier.urihttp://hdl.handle.net/1942/45569-
dc.description.abstractThe rise of Zn-ion hybrid capacitor (ZHC) has imposed high requirements on carbon cathodes, including reasonable configuration, high specific surface area, multiscale pores, and abundant defects. To achieve this objective, a template-oriented strategy coupled with multi-heteroatom modification is proposed to precisely synthesize a three-dimensional boron/nitrogen-rich carbon nanoflake-interconnected micro/nano superstructure, referred to as BNPC. The hierarchically porous framework of BNPC shares short channels for fast Zn2+ transport, increased adsorption-site accessibility, and structural robustness. Additionally, the boron/nitrogen incorporation effect significantly augments Zn2+ adsorption capability and more distinctive pseudocapacitive nature, notably enhancing Zn-ion storage and transmission kinetics by performing the dual-storage mechanism of the electric double-layer capacitance and Faradaic redox process in BNPC cathode. These merits contribute to a high capacity (143.7 mAh g(-1) at 0.2 A g(-1)) and excellent rate capability (84.5 mAh g(-1) at 30 A g(-1)) of BNPC-based aqueous ZHC, and the ZHC still shows an ultrahigh capacity of 108.5 mAh g(-1) even under a high BNPC mass loading of 12 mg cm(-2). More critically, the BNPC-based flexible device also sustains notable cyclability over 30,000 cycles and low-rate self-discharge of 2.13 mV h(-1) along with a preeminent energy output of 117.15 Wh kg(-1) at a power density of 163.15 W kg(-1), favoring a creditable applicability in modern electronics. In/ex-situ analysis and theoretical calculations elaborately elucidate the enhanced charge storage mechanism in depth. The findings offer a promising platform for the development of advanced carbon cathodes and corresponding electrochemical devices.-
dc.description.sponsorshipNatural Science Foundation of XinjiangUygur Autonomous Region,Grant/Award Number: 2023D01C11;National Natural Science Foundation ofChina, Grant/Award Numbers: 22369019,U2003216; Special Projects on RegionalCollaborative Innovation‐SCO Science andTechnology Partnership Program,International Science and TechnologyCooperation Program,Grant/Award Number: 2022E01020;Tianshan Talent Training Program,Grant/Award Number: 2023TSYCLJ0019;National Key Research and DevelopmentProgram of China,Grant/Award Numbers: 2022YFB4101600,2022YFB4101601-
dc.language.isoen-
dc.publisherWILEY-
dc.rights2025 The Author(s). Carbon Energy published by Wenzhou University and John Wiley & Sons Australia, Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.-
dc.subject.otheractive site density-
dc.subject.othercarbon superstructure-
dc.subject.otherheteroatom doping-
dc.subject.otherMOF template-
dc.subject.otherZn-ion hybrid capacitor-
dc.titleTemplate-oriented synthesis of boron/nitrogen-rich carbon nanoflake superstructure for high-performance Zn-ion hybrid capacitors-
dc.typeJournal Contribution-
local.format.pages15-
local.bibliographicCitation.jcatA1-
dc.description.notesMi, HY; Chang, XQ (corresponding author), Xinjiang Univ, Sch Chem Engn & Technol, Urumqi 830017, Peoples R China.; Qiu, JS (corresponding author), Beijing Univ Chem Technol, Coll Chem Engn, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China.-
dc.description.notesmmihongyu@xju.edu.cn; cxq2018400097@163.com; qiujs@mail.buct.edu.cn-
local.publisher.place111 RIVER ST, HOBOKEN 07030-5774, NJ USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.statusEarly view-
dc.identifier.doi10.1002/cey2.673-
dc.identifier.isi001430454700001-
local.provider.typewosris-
local.description.affiliation[Jin, Chunjiang; Guo, Fengjiao; Mi, Hongyu; Yang, Congcong; Chang, Xiaqing] Xinjiang Univ, Sch Chem Engn & Technol, Urumqi 830017, Peoples R China.-
local.description.affiliation[Yang, Nianjun] Hasselt Univ, Dept Chem, Diepenbeek, Belgium.-
local.description.affiliation[Yang, Nianjun] Hasselt Univ, IMOIMEC, Diepenbeek, Belgium.-
local.description.affiliation[Qiu, Jieshan] Beijing Univ Chem Technol, Coll Chem Engn, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China.-
local.uhasselt.internationalyes-
item.contributorJin, Chunjiang-
item.contributorGuo, Fengjiao-
item.contributorMi, Hongyu-
item.contributorYANG, Nianjun-
item.contributorYang, Congcong-
item.contributorChang, Xiaqing-
item.contributorQiu, Jieshan-
item.fullcitationJin, Chunjiang; Guo, Fengjiao; Mi, Hongyu; YANG, Nianjun; Yang, Congcong; Chang, Xiaqing & Qiu, Jieshan (2025) Template-oriented synthesis of boron/nitrogen-rich carbon nanoflake superstructure for high-performance Zn-ion hybrid capacitors. In: Carbon Energy,.-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
crisitem.journal.eissn2637-9368-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.