Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/45595
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOTTOY, Sam-
dc.contributor.authorKaryotis, K.-
dc.contributor.authorKalopesa, E.-
dc.contributor.authorVan Meerbeek, K.-
dc.contributor.authorNedelkou, J.-
dc.contributor.authorGkrimpizis, T.-
dc.contributor.authorZalidis, G.-
dc.contributor.authorDE VOCHT, Alain-
dc.contributor.authorTziolas, N.-
dc.date.accessioned2025-03-11T09:30:00Z-
dc.date.available2025-03-11T09:30:00Z-
dc.date.issued2024-
dc.date.submitted2025-03-06T13:20:43Z-
dc.identifier.citationIgarss 2024-2024 IEEE International Geoscience and Remote Sensing Symposium, Igarss 2024,IEEE, p. 1603 -1606-
dc.identifier.isbn979-8-3503-6033-2; 979-8-3503-6032-5-
dc.identifier.urihttp://hdl.handle.net/1942/45595-
dc.description.abstractSoil organic carbon (SOC) content is a key indicator of soil health informing about sustainable land management practices, but parcel-wide SOC mapping is challenging as it requires high-resolution data. Unoccupied Aerial Vehicles (UAVs) can collect data with cm-resolution but are not yet fully ready to be practically implemented. The aim of this study is to provide more insights in the explanatory capabilities of UAV-derived spectral and topographical variables. To this end, mixed models were employed to estimate the SOC content of three agricultural parcels with different crop types in Greece. Results showed variations in SOC content among parcels, with a vineyard and a kiwi orchard having higher values compared to a peach orchard. All models, containing topographical and/or spectral variables, explained 81% of SOC content variation of the training dataset. Besides crop type, other topographical and spectral variables were identified as significant predictors. The study emphasizes the feasibility of UAV data and specific modeling techniques for accurate SOC estimation at the parcel level, providing valuable insights for precision agriculture. The findings recommend further exploration, including machine-learning approaches in future studies.-
dc.language.isoen-
dc.publisherIEEE-
dc.rights2024 IEEE-
dc.subject.othersoil organic carbon-
dc.subject.otherdigital soil mapping-
dc.subject.otherunoccupied aerial vehicles-
dc.subject.otherphotogrammetry-
dc.subject.othermultispectral-
dc.titleDigital mapping of soil organic carbon using drone remote sensing-
dc.typeJournal Contribution-
local.bibliographicCitation.conferencedate2024, July 07-12-
local.bibliographicCitation.conferencenameIEEE International Geoscience and Remote Sensing Symposium (IGARSS)-
local.bibliographicCitation.conferenceplaceAthens, GREECE-
dc.identifier.epage1606-
dc.identifier.spage1603-
local.format.pages4-
local.bibliographicCitation.jcatC1-
dc.description.notesOttoy, S (corresponding author), PXL Univ Coll, Biores, B-3590 Diepenbeek, Belgium.; Ottoy, S (corresponding author), Katholieke Univ Leuven, Div Forest Nat & Landscape, B-3001 Leuven, Belgium.; Ottoy, S (corresponding author), Hasselt Univ, Ctr Environm Sci, B-3590 Diepenbeek, Belgium.-
local.publisher.place345 E 47TH ST, NEW YORK, NY 10017 USA-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
dc.identifier.doi10.1109/IGARSS53475.2024.10641290-
dc.identifier.isi001316158501230-
local.provider.typewosris-
local.bibliographicCitation.btitleIgarss 2024-2024 IEEE International Geoscience and Remote Sensing Symposium, Igarss 2024-
local.description.affiliation[Ottoy, S.; Nedelkou, J.; De Vocht, A.] PXL Univ Coll, Biores, B-3590 Diepenbeek, Belgium.-
local.description.affiliation[Ottoy, S.; Van Meerbeek, K.] Katholieke Univ Leuven, Div Forest Nat & Landscape, B-3001 Leuven, Belgium.-
local.description.affiliation[Ottoy, S.; De Vocht, A.] Hasselt Univ, Ctr Environm Sci, B-3590 Diepenbeek, Belgium.-
local.description.affiliation[Karyotis, K.; Kalopesa, E.; Zalidis, G.; Tziolas, N.] Aristotle Univ Thessaloniki, Lab Remote Sensing Spect & GIS, Thessaloniki 54124, Greece.-
local.description.affiliation[Gkrimpizis, T.] Aristotle Univ Thessaloniki, Lab Viticulture, Thessaloniki 54124, Greece.-
local.description.affiliation[Tziolas, N.] Univ Florida, Southwest Florida Res & Educ Ctr, Immokalee, FL 34142 USA.-
local.uhasselt.internationalyes-
item.contributorOTTOY, Sam-
item.contributorKaryotis, K.-
item.contributorKalopesa, E.-
item.contributorVan Meerbeek, K.-
item.contributorNedelkou, J.-
item.contributorGkrimpizis, T.-
item.contributorZalidis, G.-
item.contributorDE VOCHT, Alain-
item.contributorTziolas, N.-
item.fullcitationOTTOY, Sam; Karyotis, K.; Kalopesa, E.; Van Meerbeek, K.; Nedelkou, J.; Gkrimpizis, T.; Zalidis, G.; DE VOCHT, Alain & Tziolas, N. (2024) Digital mapping of soil organic carbon using drone remote sensing. In: Igarss 2024-2024 IEEE International Geoscience and Remote Sensing Symposium, Igarss 2024,IEEE, p. 1603 -1606.-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Digital Mapping of Soil Organic Carbon Using Drone Remote Sensing.pdf
  Restricted Access
Published version1.14 MBAdobe PDFView/Open    Request a copy
Author Guidelines for 8.pdfPeer-reviewed author version448.98 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.