Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/45660
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Yao-
dc.contributor.authorDe Spiegelaere, Ward-
dc.contributor.authorVynck, Matthijs-
dc.contributor.authorTrypsteen, Wim-
dc.contributor.authorGleerup, David-
dc.contributor.authorVandesompele, Jo-
dc.contributor.authorTHAS, Olivier-
dc.date.accessioned2025-03-17T11:36:25Z-
dc.date.available2025-03-17T11:36:25Z-
dc.date.issued2025-
dc.date.submitted2025-03-13T11:53:34Z-
dc.identifier.citationiScience, 28 (3) (Art N° 111772)-
dc.identifier.issn-
dc.identifier.urihttp://hdl.handle.net/1942/45660-
dc.description.abstractDigital PCR (dPCR) is an accurate technique for quantifying nucleic acids, but variance estimation remains a challenge due to violations of the assumptions underlying many existing methods. To address this, we propose two generic approaches, NonPVar and BinomVar, for calculating variance in dPCR data. These methods are evaluated using simulated and empirical data, incorporating common sources of variability. Unlike classical methods, our approaches are flexible and applicable to complex functions of partition counts like copy number variation (CNV), fractional abundance, and DNA integrity. An R Shiny app is provided to facilitate method selection and implementation. Our findings demonstrate that these methods improve accuracy and adaptability, offering robust tools for uncertainty estimation in dPCR experiments.-
dc.description.sponsorshipThis work was funded by the Ghent University Special Research Fund, BOF (grant 01IO0420).-
dc.language.isoen-
dc.publisherCELL PRESS-
dc.rights2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).-
dc.titleFlexible methods for uncertainty estimation of digital PCR data-
dc.typeJournal Contribution-
dc.identifier.issue3-
dc.identifier.volume28-
local.format.pages17-
local.bibliographicCitation.jcatA1-
dc.description.notesVandesompele, J (corresponding author), Univ Ghent, Dept Appl Math Comp Sci & Stat, Ghent, Belgium.; Vandesompele, J (corresponding author), Univ Ghent, Digital PCR Ctr DIGPCR, Ghent, Belgium.; Vandesompele, J (corresponding author), Univ Ghent, Ctr Med Genet, Dept Biomol Med, OncoRNALab, B-9000 Ghent, Belgium.; Vandesompele, J (corresponding author), Canc Res Inst Ghent CRIG, B-9000 Ghent, Belgium.; Vandesompele, J (corresponding author), Hasselt Univ, Data Sci Inst, I Biostat, Diepenbeek, Belgium.; Vandesompele, J (corresponding author), Univ Wollongong, Natl Inst Appl Stat Res Australia NIASRA, Wollongong, NSW 2522, Australia.-
dc.description.notesolivier.thas@uhasselt.be-
local.publisher.place50 HAMPSHIRE ST, FLOOR 5, CAMBRIDGE, MA 02139 USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr111772-
dc.identifier.doi10.1016/j.isci.2025.111772-
dc.identifier.isi001436864900001-
local.provider.typewosris-
local.description.affiliation[Chen, Yao; Vandesompele, Jo] Univ Ghent, Dept Appl Math Comp Sci & Stat, Ghent, Belgium.-
local.description.affiliation[Chen, Yao; De Spiegelaere, Ward; Vynck, Matthijs; Trypsteen, Wim; Gleerup, David; Vandesompele, Jo] Univ Ghent, Digital PCR Ctr DIGPCR, Ghent, Belgium.-
local.description.affiliation[Chen, Yao; De Spiegelaere, Ward; Vynck, Matthijs; Gleerup, David] Univ Ghent, Dept Morphol Med Imaging Orthopaed Physiotherapy &, Merelbeke, Belgium.-
local.description.affiliation[Trypsteen, Wim] Ghent Univ Hosp, Dept Internal Med, B-9000 Ghent, Belgium.-
local.description.affiliation[Gleerup, David; Vandesompele, Jo] Univ Ghent, Ctr Med Genet, Dept Biomol Med, OncoRNALab, B-9000 Ghent, Belgium.-
local.description.affiliation[Gleerup, David; Vandesompele, Jo] Canc Res Inst Ghent CRIG, B-9000 Ghent, Belgium.-
local.description.affiliation[Gleerup, David] EURAS, B-9000 Ghent, Belgium.-
local.description.affiliation[Vandesompele, Jo] Hasselt Univ, Data Sci Inst, I Biostat, Diepenbeek, Belgium.-
local.description.affiliation[Vandesompele, Jo] Univ Wollongong, Natl Inst Appl Stat Res Australia NIASRA, Wollongong, NSW 2522, Australia.-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.contributorChen, Yao-
item.contributorDe Spiegelaere, Ward-
item.contributorVynck, Matthijs-
item.contributorTrypsteen, Wim-
item.contributorGleerup, David-
item.contributorVandesompele, Jo-
item.contributorTHAS, Olivier-
item.fullcitationChen, Yao; De Spiegelaere, Ward; Vynck, Matthijs; Trypsteen, Wim; Gleerup, David; Vandesompele, Jo & THAS, Olivier (2025) Flexible methods for uncertainty estimation of digital PCR data. In: iScience, 28 (3) (Art N° 111772).-
item.accessRightsOpen Access-
crisitem.journal.eissn2589-0042-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Flexible methods for uncertainty estimation of digital PCR data.pdfPublished version3.83 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.