Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/45724
Title: Quotient Hopf algebras of the free bialgebra with PBW bases and GK-dimensions
Authors: JIA, Huan 
Hu, Naihong
Xiong, Rongchuan
ZHANG, Yinhuo 
Corporate Authors: Naihong Hu, Rongchuan Xiong and Yinhuo Zhang
Issue Date: 2023
Publisher: 
Source: Bulletin of the Belgian Mathematical Society-simon Stevin, 30 (5) , p. 634 -667
Abstract: Let $\mathbb{K}$ be a field. We study the free bialgebra $\mathcal{T}$ generated by the coalgebra $C=\mathbb{K} g\oplus \mathbb{K} h$ and its quotient bialgebras (or Hopf algebras) over $\mathbb{K}$. We show that the free noncommutative Fa\`a di Bruno bialgebra is a sub-bialgebra of $\mathcal{T}$, and the quotient bialgebra $\overline{\mathcal{T}}:=\mathcal{T}/(E_{\alpha}|~\alpha(g)\ge 2)$ is an Ore extension of the well-known Fa\`a di Bruno bialgebra. The image of the free noncommutative Fa\`a di Bruno bialgebra in the quotient $\overline{\mathcal{T}}$ gives a more reasonable non-commutative version of the commutative Fa\`a di Bruno bialgebra from the PBW basis point view. If char$\mathbb{K}=p>0$, we obtain a chain of quotient Hopf algebras of $\overline{\mathcal{T}}$: $\overline{\mathcal{T}}\twoheadrightarrow \Tt_{n}\twoheadrightarrow \overline{\mathcal{T}}_{n}'(p)\twoheadrightarrow \overline{\mathcal{T}}_{n}(p)\twoheadrightarrow \overline{\mathcal{T}}_{n}(p;d_{1}) \twoheadrightarrow\ldots \twoheadrightarrow \overline{\mathcal{T}}_{n}(p;d_{j},d_{j-1},\ldots,d_{1})\twoheadrightarrow \ldots \twoheadrightarrow \overline{\mathcal{T}}_{n}(p;d_{p-2},d_{p-3},\ldots,d_{1})$ with finite GK-dimensions. Furthermore, we study the homological properties and the coradical filtrations of those quotient Hopf algebras.
Keywords: Faà di Bruno Hopf algebra;GK-dimension;Lyndon-Shirshov basis;pointed Hopf algebras;shuffle type polynomials
Document URI: http://hdl.handle.net/1942/45724
ISSN: 1370-1444
e-ISSN: 2034-1970
DOI: 10.36045/j.bbms.230408
Rights: 2023 The Belgian Mathematical Society
Category: A1
Type: Journal Contribution
Appears in Collections:Research publications

Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.