Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/45724
Title: | Quotient Hopf algebras of the free bialgebra with PBW bases and GK-dimensions | Authors: | JIA, Huan Hu, Naihong Xiong, Rongchuan ZHANG, Yinhuo |
Corporate Authors: | Naihong Hu, Rongchuan Xiong and Yinhuo Zhang | Issue Date: | 2023 | Publisher: | Source: | Bulletin of the Belgian Mathematical Society-simon Stevin, 30 (5) , p. 634 -667 | Abstract: | Let $\mathbb{K}$ be a field. We study the free bialgebra $\mathcal{T}$ generated by the coalgebra $C=\mathbb{K} g\oplus \mathbb{K} h$ and its quotient bialgebras (or Hopf algebras) over $\mathbb{K}$. We show that the free noncommutative Fa\`a di Bruno bialgebra is a sub-bialgebra of $\mathcal{T}$, and the quotient bialgebra $\overline{\mathcal{T}}:=\mathcal{T}/(E_{\alpha}|~\alpha(g)\ge 2)$ is an Ore extension of the well-known Fa\`a di Bruno bialgebra. The image of the free noncommutative Fa\`a di Bruno bialgebra in the quotient $\overline{\mathcal{T}}$ gives a more reasonable non-commutative version of the commutative Fa\`a di Bruno bialgebra from the PBW basis point view. If char$\mathbb{K}=p>0$, we obtain a chain of quotient Hopf algebras of $\overline{\mathcal{T}}$: $\overline{\mathcal{T}}\twoheadrightarrow \Tt_{n}\twoheadrightarrow \overline{\mathcal{T}}_{n}'(p)\twoheadrightarrow \overline{\mathcal{T}}_{n}(p)\twoheadrightarrow \overline{\mathcal{T}}_{n}(p;d_{1}) \twoheadrightarrow\ldots \twoheadrightarrow \overline{\mathcal{T}}_{n}(p;d_{j},d_{j-1},\ldots,d_{1})\twoheadrightarrow \ldots \twoheadrightarrow \overline{\mathcal{T}}_{n}(p;d_{p-2},d_{p-3},\ldots,d_{1})$ with finite GK-dimensions. Furthermore, we study the homological properties and the coradical filtrations of those quotient Hopf algebras. | Keywords: | Faà di Bruno Hopf algebra;GK-dimension;Lyndon-Shirshov basis;pointed Hopf algebras;shuffle type polynomials | Document URI: | http://hdl.handle.net/1942/45724 | ISSN: | 1370-1444 | e-ISSN: | 2034-1970 | DOI: | 10.36045/j.bbms.230408 | Rights: | 2023 The Belgian Mathematical Society | Category: | A1 | Type: | Journal Contribution |
Appears in Collections: | Research publications |
Show full item record
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.