Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/45751
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFAJGENBLAT, Maxime-
dc.contributor.authorWijns, Robby-
dc.contributor.authorDe Knijf, Geert-
dc.contributor.authorStoks, Robby-
dc.contributor.authorLemmens, Pieter-
dc.contributor.authorHerremans, Marc-
dc.contributor.authorVanormelingen, Pieter-
dc.contributor.authorNEYENS, Thomas-
dc.contributor.authorDe Meester, Luc-
dc.date.accessioned2025-03-31T08:21:03Z-
dc.date.available2025-03-31T08:21:03Z-
dc.date.issued2025-
dc.date.submitted2025-03-27T13:39:24Z-
dc.identifier.citationEcology letters, 28 (3) (Art N° e70094)-
dc.identifier.urihttp://hdl.handle.net/1942/45751-
dc.description.abstractOnline portals have facilitated collecting extensive biodiversity data by naturalists, offering unprecedented coverage and resolution in space and time. Despite being the most widely available class of biodiversity data, opportunistically collected records have remained largely inaccessible to community ecologists since the imperfect and highly heterogeneous detection process can severely bias inference. We present a novel statistical approach that leverages these datasets by embedding a spatiotemporal joint species distribution model within a flexible site-occupancy framework. Our model addresses variable detection probabilities across visits and species by modelling phenological patterns and by extending the use of latent variables to characterise observer-specific detection and reporting behaviour. We apply our model to an opportunistically collected dataset on lentic odonates, encompassing over 100,000 waterbody visits in Flanders (N-Belgium), to show that the model provides insights into biological communities at high resolution, including phenology, interannual trends, environmental associations and spatiotemporal co-distributional patterns in community composition.-
dc.description.sponsorshipWe thank the Flemish Dragonfly Society and the many naturalists for contributing their sightings to Waarnemingen.be well as the experts of the platform's data validation team. M.F., T.N. and L.D.M. acknowledge funding by Research Foundation Flanders (FWO, grant numbers 11E3222N, G0A4121N and G0A3M24N). R.W. acknowledges a KU Leuven PhD scholarship (grant number DB/22/007/bm). L.D.M. and R.S. acknowledge financial support from a KU Leuven research project (number C16/2023/003). L.D.M. acknowledges support by an IGB starting fund. M.F., R.W., P.L. and L.D.M. acknowledge support from the PONDERFUL project, funded by the European Union's Horizon 2020 research and innovation program under grant agreement No. 869296. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation Flanders (FWO) and the Flemish Government.-
dc.language.isoen-
dc.publisherWILEY-
dc.rights2025 The Author(s). Ecology Letters published by John Wiley & Sons Ltd This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.-
dc.subject.otherayesian hierarchical modelling-
dc.subject.othercitizen science data-
dc.subject.otherjoint species distribution modelling-
dc.subject.othermetacommunity ecology-
dc.subject.otheroccupancy modelling-
dc.titleLeveraging Massive Opportunistically Collected Datasets to Study Species Communities in Space and Time-
dc.typeJournal Contribution-
dc.identifier.issue3-
dc.identifier.volume28-
local.format.pages13-
local.bibliographicCitation.jcatA1-
dc.description.notesFajgenblat, M (corresponding author), Katholieke Univ Leuven, Lab Freshwater Ecol Evolut & Conservat, Leuven, Belgium.; Fajgenblat, M (corresponding author), Hasselt Univ, Data Sci Inst, I Biostat, Diepenbeek, Belgium.; Fajgenblat, M (corresponding author), Natuurpunt Studie, Mechelen, Belgium.; Fajgenblat, M (corresponding author), Katholieke Univ Leuven, Lab Evolutionary Stress Ecol & Ecotoxicol, Leuven, Belgium.-
dc.description.notesmaxime.fajgenblat@gmail.com-
local.publisher.place111 RIVER ST, HOBOKEN 07030-5774, NJ USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnre70094-
local.type.programmeH2020-
local.relation.h2020869296-
dc.identifier.doi10.1111/ele.70094-
dc.identifier.pmid40084931-
dc.identifier.isi001444487200001-
dc.contributor.orcidFajgenblat, Maxime/0000-0002-2233-1527; Stoks,-
dc.contributor.orcidRobby/0000-0003-4130-0459; Neyens, Thomas/0000-0003-2364-7555-
local.provider.typewosris-
local.description.affiliation[Fajgenblat, Maxime; Wijns, Robby; Lemmens, Pieter; De Meester, Luc] Katholieke Univ Leuven, Lab Freshwater Ecol Evolut & Conservat, Leuven, Belgium.-
local.description.affiliation[Fajgenblat, Maxime; Neyens, Thomas] Hasselt Univ, Data Sci Inst, I Biostat, Diepenbeek, Belgium.-
local.description.affiliation[Fajgenblat, Maxime; Herremans, Marc; Vanormelingen, Pieter] Natuurpunt Studie, Mechelen, Belgium.-
local.description.affiliation[Fajgenblat, Maxime; Stoks, Robby] Katholieke Univ Leuven, Lab Evolutionary Stress Ecol & Ecotoxicol, Leuven, Belgium.-
local.description.affiliation[De Knijf, Geert; Lemmens, Pieter] Res Inst Nat & Forest INBO, Brussels, Belgium.-
local.description.affiliation[Lemmens, Pieter; De Meester, Luc] Leibniz Inst Gewasserokol & Binnenfischerei IGB, Berlin, Germany.-
local.description.affiliation[Neyens, Thomas] Katholieke Univ Leuven, Leuven Biostat & Stat Bioinformat Ctr L BioStat, Leuven, Belgium.-
local.description.affiliation[De Meester, Luc] Free Univ Berlin, Inst Biol, Berlin, Germany.-
local.description.affiliation[De Meester, Luc] Berlin Brandenburg Inst Adv Biodivers Res BBIB, Berlin, Germany.-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.fullcitationFAJGENBLAT, Maxime; Wijns, Robby; De Knijf, Geert; Stoks, Robby; Lemmens, Pieter; Herremans, Marc; Vanormelingen, Pieter; NEYENS, Thomas & De Meester, Luc (2025) Leveraging Massive Opportunistically Collected Datasets to Study Species Communities in Space and Time. In: Ecology letters, 28 (3) (Art N° e70094).-
item.contributorFAJGENBLAT, Maxime-
item.contributorWijns, Robby-
item.contributorDe Knijf, Geert-
item.contributorStoks, Robby-
item.contributorLemmens, Pieter-
item.contributorHerremans, Marc-
item.contributorVanormelingen, Pieter-
item.contributorNEYENS, Thomas-
item.contributorDe Meester, Luc-
crisitem.journal.issn1461-023X-
crisitem.journal.eissn1461-0248-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Ecology Letters .pdfPublished version5.13 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.