Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/45874
Title: Comparison of Radio Frequency vs beamformed ultrasound data for infarct classification with CNNs
Authors: Tostes, Paulo
Balinisteanu, Anca E.
MOURA FERREIRA, Sara 
Williams, Helena
Voigt, Jens-Uwe
D'hooge, Jan
Issue Date: 2024
Publisher: IEEE
Source: 2024 IEEE Ultrasonic, ferroelectrics, and frequency control joint symposium, UFFC-JS 2024, IEEE, (Art N° 8318)
Series/Report: IEEE International Symposium on Applications of Ferroelectrics
Abstract: Ultrasound is the most practical, cost-effective and patient-friendly clinical imaging modality. However, Computed Tomography and Magnetic Resonance Imaging outperform echography when texture or tissue characterization is clinically required. As AI-methodologies could help resolve this, a Deep Learning algorithm was applied to classify localized infarcted tissue from static ultrasound recordings.
Notes: Tostes, P (corresponding author), Katholieke Univ Leuven, Dept Cardiovasc Sci, Leuven, Belgium.
paulo.tostes@kuleuven.be; anca.balinisteanu@ymail.com;
sara.mouraferreira@gmail.com; helena.williams@kuleuven.be;
jens-uwe.voigt@uzleuven.be; jan.dhooge@kuleuven.be
Keywords: Convolutional Neural Networks;Deep Learning;Infarct Classification;Radio Frequency;Ultrasound Texture
Document URI: http://hdl.handle.net/1942/45874
ISBN: 979-8-3503-7191-8; 979-8-3503-7190-1
DOI: 10.1109/UFFC-JS60046.2024.10794162
ISI #: 001428150100622
Rights: IEEE
Category: C1
Type: Proceedings Paper
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
Comparison of Radio Frequency vs beamformed ultrasound data for infarct classification with CNNs.pdf
  Restricted Access
Published version286.17 kBAdobe PDFView/Open    Request a copy
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.