Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/46152
Title: A dual-mode microfluidic chip embedded with photoelectrochemical sensing and fluorescence imaging for phenotypic analysis of tumor cells
Authors: Chen, Lifei
He, Jiangling
Liang, Haiping
Li, Xingcan
Zhang , Yi
Wang , Yanying
YANG, Nianjun 
Li , Chunya
Cheng, Shibo
Issue Date: 2025
Publisher: ELSEVIER
Source: Talanta, 295 (Art N° 128275)
Abstract: Circulating tumor cells (CTCs) in peripheral blood are a heterogeneous population responsible for tumor metastasis. Therefore, the isolation of CTCs and precise analysis of their phenotypes are crucial for early cancer diagnosis and effective treatment. In this study, we developed an integrated microfluidic chip capable of efficiently isolating CTCs from whole blood and performing dual-mode detection using near-infrared photoelectrochemical (PEC) aptasensors and fluorescence imaging. This dual-mode strategy enhances phenotypic screening and improves detection accuracy. The chip features a herringbone-shaped microfluidic channel coupled with a PEC sensing system based on Yb-Bi2S3@AuNPs nanocomposites, which serve as photoelectric conversion elements, and an aptamer-functionalized surface for CTC capture. Utilizing a "rail transit" principle, different CTC phenotypes were selectively captured and screened based on spatial effects. Following capture, the CTCs were labeled with a hemicyanine fluorescent probe for fluorescence imaging. The system achieved a tumor cell separation efficiency of up to 90 %. The combination of PEC aptasensor sensitivity and fluorescence imaging ensures the high accuracy of tumor cell detection. This dual-mode system provides both highly sensitive PECbased detection and fluorescence-based cell counting, enabling the phenotypic screening and quantification of CTCs with exceptional performance.
Notes: Li, CY (corresponding author), South Cent Minzu Univ, Minist Educ, Sch Chem & Mat Sci, Key Lab Catalysis & Energy Mat Chem, Wuhan 430074, Peoples R China.; Li, CY (corresponding author), South Cent Minzu Univ, Sch Chem & Mat Sci, State Ethn Affairs Commiss, Key Lab Analyt Chem, Wuhan 430074, Peoples R China.; Cheng, SB (corresponding author), Hubei Univ Chinese Med, Sch Lab Med, Hubei Shizhen Lab, Wuhan 430065, Peoples R China.; Yang, NJ (corresponding author), Hasselt Univ, Dept Chem, B-3590 Diepenbeek, Belgium.
nianjun.yang@uhasselt.be; lichychem@mail.scuec.edu.cn;
shibocheng@hbucm.edu.cn
Keywords: Circulating tumor cells;Photoelectrochemical sensing;Fluorescence imaging;Phenotypic screening
Document URI: http://hdl.handle.net/1942/46152
ISSN: 0039-9140
e-ISSN: 1873-3573
DOI: 10.1016/j.talanta.2025.128275
ISI #: 001490770100001
Rights: 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Category: A1
Type: Journal Contribution
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
A dual-mode .pdf
  Restricted Access
Published version6.26 MBAdobe PDFView/Open    Request a copy
ACFrOgBfyTcsOdiQxFYzzA7BId18SY4MtrTEiR8xbUatXNsODbk0MU05FU1etfCFmmrUGmq11hUcIoN.pdf
  Until 2026-06-01
Peer-reviewed author version8.09 MBAdobe PDFView/Open    Request a copy
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.