Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/46250
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIvanov, Sergei-
dc.contributor.authorMamaev, Daniil-
dc.contributor.authorNORDSKOVA, Anya-
dc.date.accessioned2025-06-20T09:48:42Z-
dc.date.available2025-06-20T09:48:42Z-
dc.date.issued2025-
dc.date.submitted2025-06-19T09:16:55Z-
dc.identifier.citationJournal of Functional Analysis, 289 (8) (Art N° 111063)-
dc.identifier.issn0022-1236-
dc.identifier.urihttp://hdl.handle.net/1942/46250-
dc.description.abstractWe prove the following local version of Blaschke-Kakutani's characterization of ellipsoids: Let V be a finite-dimensional real vector space, B subset of V a convex body with 0 in its interior, and 2 <= k < dim Van integer. Suppose that the body B is contained in a cylinder based on the cross-section B boolean AND X for every k-plane X from a connected open set of linear k-planes in V. Then in the region of V swept by these k-planes B coincides with either an ellipsoid, or a cylinder over an ellipsoid, or a cylinder over a k-dimensional base. For k = 2 and k = 3 we obtain as a corollary a local solution to Banach's isometric subspaces problem: If all cross-sections of B by k-planes from a connected open set are linearly equivalent, then the same conclusion as above holds. (c) 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).-
dc.description.sponsorshipFunding This work was supported by the Russian Science Foundation under Grant 21-11-00040. The second author was supported by the Engineering and Physical Sciences Research 24 S. Ivanov et al. / Journal of Functional Analysis 289 (2025) 111063 Council [EP/S021590/1], The EPSRC Centre for Doctoral Training in Geometry and Number Theory (The London School of Geometry and Number Theory), University College London. Acknowledgments The authors are grateful to the anonymous referee for prompting us to write Remark 1.5.-
dc.language.isoen-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.rights2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).-
dc.subject.otherEllipsoid characterization-
dc.subject.otherConvex body-
dc.subject.otherCross-section-
dc.titleLocal Blaschke-Kakutani ellipsoid characterization and Banach's isometric subspaces problem-
dc.typeJournal Contribution-
dc.identifier.issue8-
dc.identifier.volume289-
local.format.pages24-
local.bibliographicCitation.jcatA1-
dc.description.notesMamaev, D (corresponding author), UCL, Gower St, London WC1E 6BT, England.-
dc.description.notessvivanov@pdmi.ras.ru; daniil.mamaev.21@ucl.ac.uk;-
dc.description.notesanya.nordskova@uhasselt.be-
local.publisher.place525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr111063-
dc.identifier.doi10.1016/j.jfa.2025.111063-
dc.identifier.isi001504612700003-
dc.contributor.orcidMamaev, Daniil/0000-0002-7606-4276-
dc.identifier.eissn1096-0783-
local.provider.typewosris-
local.description.affiliation[Ivanov, Sergei; Mamaev, Daniil; Nordskova, Anya] Steklov Math Inst, St Petersburg Dept, Fontanka 27, St Petersburg 191023, Russia.-
local.description.affiliation[Ivanov, Sergei] St Petersburg State Univ, Univ Skaya Nab 7-9, St Petersburg 199034, Russia.-
local.description.affiliation[Mamaev, Daniil] UCL, Gower St, London WC1E 6BT, England.-
local.description.affiliation[Nordskova, Anya] Univ Hasselt, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.-
local.uhasselt.internationalyes-
item.contributorIvanov, Sergei-
item.contributorMamaev, Daniil-
item.contributorNORDSKOVA, Anya-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
item.fullcitationIvanov, Sergei; Mamaev, Daniil & NORDSKOVA, Anya (2025) Local Blaschke-Kakutani ellipsoid characterization and Banach's isometric subspaces problem. In: Journal of Functional Analysis, 289 (8) (Art N° 111063).-
crisitem.journal.issn0022-1236-
crisitem.journal.eissn1096-0783-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
xx.pdfPublished version513.18 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.