Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/46446
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGORCZAK, Katarzyna-
dc.contributor.authorBURZYKOWSKI, Tomasz-
dc.contributor.authorCLAESEN, Jurgen-
dc.contributor.editorFiston-Lavier, Anna-Sophie-
dc.date.accessioned2025-07-28T09:01:56Z-
dc.date.available2025-07-28T09:01:56Z-
dc.date.issued2025-
dc.date.submitted2025-07-22T11:10:21Z-
dc.identifier.citationBioinformatics Advances, 5 (1) (Art N° vbaf126)-
dc.identifier.urihttp://hdl.handle.net/1942/46446-
dc.description.abstractHigh-throughput techniques for biological and (bio)medical sciences often result in read counts used in downstream analysis. Nowadays, complex experimental designs in combination with these high-throughput methods are regularly applied and lead to correlated count-data measured from matched samples or taken from the same subject under multiple treatment conditions. Additionally, as is common with biological data, the variance is often larger than the mean, leading to over dispersed count data. Hierarchical models have been proposed to analyze over dispersed, correlated data from paired, longitudinal, or clustered experiments. We consider a hierarchical negative-binomial model with normally distributed random effects to account for the within- and between-sample correlation. We focus on different software implementations to allow the use of the model in practice.-
dc.description.sponsorshipUitgegeven met steun van de Universitaire Stichting van Belgie-
dc.language.isoen-
dc.publisherOXFORD UNIV PRESS-
dc.rightsThe Author(s) 2025. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.-
dc.titleA hierarchical negative-binomial model for analysis of correlated sequencing data: practical implementations-
dc.typeJournal Contribution-
dc.identifier.issue1-
dc.identifier.volume5-
local.format.pages11-
local.bibliographicCitation.jcatA1-
dc.description.notesClaesen, J (corresponding author), Vrije Univ Amsterdam, Dept Epidemiol & Data Sci, Amsterdam Univ Med Ctr, NL-1081 HV Amsterdam, Netherlands.-
dc.description.notesj.claesen@amsterdamumc.nl-
local.publisher.placeGREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnrvbaf126-
dc.identifier.doi10.1093/bioadv/vbaf126-
dc.identifier.pmid40662058-
dc.identifier.isi001523580400001-
local.provider.typewosris-
local.description.affiliation[Gorczak, Katarzyna; Burzykowski, Tomasz; Claesen, Jurgen] Hasselt Univ, Data Sci Inst, B-3500 Hasselt, Belgium.-
local.description.affiliation[Gorczak, Katarzyna] Open Analyt, B-2600 Antwerp, Belgium.-
local.description.affiliation[Burzykowski, Tomasz] Med Univ Bialystok, Dept Biostat & Med Informat, PL-15089 Bialystok, Poland.-
local.description.affiliation[Burzykowski, Tomasz] Int Drug Dev Inst IDDI, B-1340 Ottignies Louvain La Neuv, Belgium.-
local.description.affiliation[Claesen, Jurgen] Vrije Univ Amsterdam, Dept Epidemiol & Data Sci, Amsterdam Univ Med Ctr, NL-1081 HV Amsterdam, Netherlands.-
local.uhasselt.internationalyes-
item.contributorGORCZAK, Katarzyna-
item.contributorBURZYKOWSKI, Tomasz-
item.contributorCLAESEN, Jurgen-
item.contributorFiston-Lavier, Anna-Sophie-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.fullcitationGORCZAK, Katarzyna; BURZYKOWSKI, Tomasz & CLAESEN, Jurgen (2025) A hierarchical negative-binomial model for analysis of correlated sequencing data: practical implementations. In: Bioinformatics Advances, 5 (1) (Art N° vbaf126).-
crisitem.journal.eissn2635-0041-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
A hierarchical negative-binomial model for analysis of correlated sequencing data_ practical implementations.pdfPublished version1.39 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.