Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/46503
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRadzinski, Piotr-
dc.contributor.authorSkrajny, Jakub-
dc.contributor.authorMoczulski, Maurycy-
dc.contributor.authorCIACH, Michal-
dc.contributor.authorVALKENBORG, Dirk-
dc.contributor.authorBalluff, Benjamin-
dc.contributor.authorGambin, Anna-
dc.date.accessioned2025-08-05T06:47:39Z-
dc.date.available2025-08-05T06:47:39Z-
dc.date.issued2025-
dc.date.submitted2025-08-04T15:24:40Z-
dc.identifier.citationAnalytical Chemistry, 97 (29) , p. 15579 -15585-
dc.identifier.urihttp://hdl.handle.net/1942/46503-
dc.description.abstractIn this study, we introduce a novel encoding algorithm utilizing contrastive learning to address the substantial data size challenges inherent in mass spectrometry imaging. Our algorithm compresses MSI data into fixed-length vectors, significantly reducing storage requirements while maintaining crucial diagnostic information. Through rigorous testing on data sets, including mouse bladder cross sections and biopsies from patients with Barrett's esophagus, we demonstrate that our method not only reduces the data size but also preserves the essential features for accurate analysis. Segmentation tasks performed on both raw and encoded images using traditional k-means and our proposed iterative k-means algorithm show that the encoded images achieve the same or even higher accuracy than the segmentation on raw images. Finally, reducing the size of images makes it possible to perform t-SNE, a technique intended for frequent use in the field to gain a deeper understanding of measured tissues. However, its application has so far been limited by computational capabilities. The algorithm's code, written in Python, is available on our GitHub page https://github.com/kskrajny/MSI-Segmentation.-
dc.description.sponsorshipThe work was supported by the Polish National Science Centre Grant no. 2021/41/B/ST6/03526. We acknowledge the BioGeMT Team (HORIZON-WIDERA-2022 Grant ID: 101086768) at the University of Malta.-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.rightsThis article is licensed under CC-BY 4.0-
dc.subject.otherAnimals-
dc.subject.otherMice-
dc.subject.otherAlgorithms-
dc.subject.otherHumans-
dc.subject.otherBarrett Esophagus-
dc.subject.otherUrinary Bladder-
dc.subject.otherImage Processing, Computer-Assisted-
dc.subject.otherMachine Learning-
dc.subject.otherData Compression-
dc.subject.otherMass Spectrometry-
dc.titleEfficient Compression of Mass Spectrometry Images via Contrastive Learning-Based Encoding-
dc.typeJournal Contribution-
dc.identifier.epage15585-
dc.identifier.issue29-
dc.identifier.spage15579-
dc.identifier.volume97-
local.format.pages7-
local.bibliographicCitation.jcatA1-
dc.description.notesRadzinski, P (corresponding author), Univ Warsaw, Inst Informat, Stefana Banacha 2, PL-02097 Warsaw, Poland.-
dc.description.notespmradzinski@mimuw.edu.pl-
local.publisher.place1155 16TH ST, NW, WASHINGTON, DC 20036 USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1021/acs.analchem.4c06913-
dc.identifier.pmid40689435-
dc.identifier.isi001532250900001-
local.provider.typewosris-
local.description.affiliation[Radzinski, Piotr; Skrajny, Jakub; Moczulski, Maurycy; Gambin, Anna] Univ Warsaw, Inst Informat, Stefana Banacha 2, PL-02097 Warsaw, Poland.-
local.description.affiliation[Ciach, Michal A.] Univ Malta, Fac Hlth Sci, Dept Appl Biomed Sci, Msida 2080, MSD, Malta.-
local.description.affiliation[Valkenborg, Dirk] Hasselt Univ, Interuniv Inst Biostat & Stat Bioinformat, Hasselt, Belgium.-
local.description.affiliation[Balluff, Benjamin] Maastricht Univ, Maastricht MultiModal Mol Imaging Inst M4I, NL-6229 ER Maastricht, Netherlands.-
local.uhasselt.internationalyes-
item.contributorRadzinski, Piotr-
item.contributorSkrajny, Jakub-
item.contributorMoczulski, Maurycy-
item.contributorCIACH, Michal-
item.contributorVALKENBORG, Dirk-
item.contributorBalluff, Benjamin-
item.contributorGambin, Anna-
item.fullcitationRadzinski, Piotr; Skrajny, Jakub; Moczulski, Maurycy; CIACH, Michal; VALKENBORG, Dirk; Balluff, Benjamin & Gambin, Anna (2025) Efficient Compression of Mass Spectrometry Images via Contrastive Learning-Based Encoding. In: Analytical Chemistry, 97 (29) , p. 15579 -15585.-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
crisitem.journal.issn0003-2700-
crisitem.journal.eissn1520-6882-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Efficient Compression of Mass Spectrometry Images via Contrastive Learning-Based Encoding.pdfPublished version9.96 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.