Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/47404
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEGGHE, Leo-
dc.contributor.authorROUSSEAU , Ronald-
dc.date.accessioned2025-09-26T09:15:48Z-
dc.date.available2025-09-26T09:15:48Z-
dc.date.issued2025-
dc.date.submitted2025-09-19T13:41:44Z-
dc.identifier.citationQuantitative science studies, 6 , p. 796 -809-
dc.identifier.urihttp://hdl.handle.net/1942/47404-
dc.description.abstractWe make precise what is meant by stating that modified fractional counting (MFC) liesbetween full counting and complete-normalized fractional counting by proving that forindividuals, the MFC values are weighted geometric averages of these two extremes. There aretwo essentially different ways to consider the production of institutes in multi-institutionalarticles, namely participation and actual number of contributions. Starting from an ideapublished by Sivertsen, Rousseau and Zhang in 2019, we present three formulas for measuringthe production of institutes in multi-institutional articles. It is shown that the one proposed bySivertsen, Rousseau and Zhang is situated between the two other ways. Less obviousproperties of MFC are proven using the majorization order.-
dc.description.sponsorshipThe authors thank the reviewers for their useful remarks, leading to a third method of bridging fractionalized and full counting.-
dc.language.isoen-
dc.publisherMIT PRESS-
dc.rights2025 Leo Egghe and Ronald Rousseau. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.-
dc.subject.othermajorization-
dc.subject.otherMFC-
dc.subject.othermodified fractional counting-
dc.subject.othermulti-institutional publications-
dc.subject.otherweighted geometric average-
dc.titleMathematical reflections on modified fractional counting-
dc.typeJournal Contribution-
dc.identifier.epage809-
dc.identifier.spage796-
dc.identifier.volume6-
local.format.pages14-
local.bibliographicCitation.jcatA1-
dc.description.notesRousseau, R (corresponding author), Univ Antwerp, Fac Social Sci, Antwerp, Belgium.; Rousseau, R (corresponding author), Katholieke Univ Leuven, MSI, Fac Onderzoekscentrum ECOOM, Leuven, Belgium.-
dc.description.notesronald.rousseau@uantwerpen.be-
local.publisher.placeONE ROGERS ST, CAMBRIDGE, MA 02142-1209 USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1162/qss.a.6-
dc.identifier.isi001562082700003-
local.provider.typewosris-
local.description.affiliation[Egghe, Leo] Hasselt Univ, Hasselt, Belgium.-
local.description.affiliation[Rousseau, Ronald] Univ Antwerp, Fac Social Sci, Antwerp, Belgium.-
local.description.affiliation[Rousseau, Ronald] Katholieke Univ Leuven, MSI, Fac Onderzoekscentrum ECOOM, Leuven, Belgium.-
local.uhasselt.internationalno-
item.fulltextWith Fulltext-
item.fullcitationEGGHE, Leo & ROUSSEAU , Ronald (2025) Mathematical reflections on modified fractional counting. In: Quantitative science studies, 6 , p. 796 -809.-
item.accessRightsOpen Access-
item.contributorEGGHE, Leo-
item.contributorROUSSEAU , Ronald-
crisitem.journal.eissn2641-3337-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
qss.a.6 796..809.pdfPublished version432.16 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.