Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/47507
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGrohe, Martin-
dc.contributor.authorStandke, Christoph-
dc.contributor.authorSTEEGMANS, Juno-
dc.contributor.authorVAN DEN BUSSCHE, Jan-
dc.contributor.editorRoy, S.-
dc.contributor.editorKara, A.-
dc.date.accessioned2025-10-14T07:23:16Z-
dc.date.available2025-10-14T07:23:16Z-
dc.date.issued2025-
dc.date.submitted2025-09-19T13:49:55Z-
dc.identifier.citation28TH International conference on database theory, ICDT 2025, SCHLOSS DAGSTUHL, LEIBNIZ CENTER INFORMATICS, p. 9:1 -9:18 (Art N° 9)-
dc.identifier.isbn978-3-95977-364-5-
dc.identifier.issn1868-8969-
dc.identifier.urihttp://hdl.handle.net/1942/47507-
dc.description.abstractWe lay the foundations for a database-inspired approach to interpreting and understanding neural network models by querying them using declarative languages. Towards this end we study different query languages, based on first-order logic, that mainly differ in their access to the neural network model. First-order logic over the reals naturally yields a language which views the network as a black box; only the input-output function defined by the network can be queried. This is essentially the approach of constraint query languages. On the other hand, a white-box language can be obtained by viewing the network as a weighted graph, and extending first-order logic with summation over weight terms. The latter approach is essentially an abstraction of SQL. In general, the two approaches are incomparable in expressive power, as we will show. Under natural circumstances, however, the white-box approach can subsume the black-box approach; this is our main result. We prove the result concretely for linear constraint queries over real functions definable by feedforward neural networks with a fixed number of hidden layers and piecewise linear activation functions.-
dc.description.sponsorshipFunding Martin Grohe: Funded by the European Union (ERC, SymSim, 101054974). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them. Christoph Standke: Funded by the German Research Foundation (DFG) under grants GR 1492/16-1 and GRK 2236 (UnRAVeL). Juno Steegmans: Supported by the Special Research Fund (BOF) of UHasselt. Jan Van den Bussche: Partially supported by the Flanders AI Program (FAIR)-
dc.language.isoen-
dc.publisherSCHLOSS DAGSTUHL, LEIBNIZ CENTER INFORMATICS-
dc.relation.ispartofseriesLeibniz International Proceedings in Informatics-
dc.rightsMartin Grohe, Christoph Standke, Juno Steegmans, and Jan Van den Bussche; licensed under Creative Commons License CC-BY 4.0-
dc.subject.otherExpressive power of query languages-
dc.subject.otherMachine learning models-
dc.subject.otherlanguages for interpretability-
dc.subject.otherexplainable AI-
dc.titleQuery Languages for Neural Networks-
dc.typeProceedings Paper-
local.bibliographicCitation.conferencedate2025, Mart 25-28-
local.bibliographicCitation.conferencename28th International Conference on Database Theory-ICDT-
local.bibliographicCitation.conferenceplaceBarcelona, SPAIN-
dc.identifier.epage9:18-
dc.identifier.spage9:1-
dc.identifier.volume328-
local.format.pages18-
local.bibliographicCitation.jcatC1-
dc.description.notesGrohe, M; Standke, C (corresponding author), Rhein Westfal TH Aachen, Aachen, Germany.; Steegmans, J; Van den Bussche, J (corresponding author), UHasselt, Data Sci Inst, Diepenbeek, Belgium.-
local.publisher.placeOKTAVIE-ALLEE, WADEM, 66687, GERMANY-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
local.bibliographicCitation.artnr9-
dc.identifier.doi10.4230/LIPIcs.ICDT.2025.9-
dc.identifier.isi001533987300009-
dc.identifier.urlhttps://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2025.9-
local.provider.typewosris-
local.bibliographicCitation.btitle28TH International conference on database theory, ICDT 2025-
local.description.affiliation[Grohe, Martin; Standke, Christoph] Rhein Westfal TH Aachen, Aachen, Germany.-
local.description.affiliation[Steegmans, Juno; Van den Bussche, Jan] UHasselt, Data Sci Inst, Diepenbeek, Belgium.-
local.uhasselt.internationalyes-
local.contributor.datacreatorGrohe, Martin-
local.contributor.datacreatorStandke, Christoph-
local.contributor.datacreatorSteegmans, Juno-
local.contributor.datacreatorVan den Bussche, Jan-
local.format.extent18 pages-
local.format.mimetypeapplication/pdf-
local.contributororcid.datacreator0000-0002-0292-9142-
local.contributororcid.datacreator0000-0002-3034-730X-
local.contributororcid.datacreator0000-0003-2087-9430-
local.contributororcid.datacreator0000-0003-0072-3252-
dc.rights.accessCreative Commons Attribution 4.0 International license-
item.fulltextWith Fulltext-
item.fullcitationGrohe, Martin; Standke, Christoph; STEEGMANS, Juno & VAN DEN BUSSCHE, JanGrohe, Martin; Standke, Christoph; Steegmans, Juno & Van den Bussche, Jan (2025) Query Languages for Neural Networks. 28TH International conference on database theory, ICDT 2025, SCHLOSS DAGSTUHL, LEIBNIZ CENTER INFORMATICS, p. 9:1 -9:18 (Art N° 9).-
item.contributorGrohe, Martin-
item.contributorStandke, Christoph-
item.contributorSTEEGMANS, Juno-
item.contributorVAN DEN BUSSCHE, Jan-
item.contributorRoy, S.-
item.contributorKara, A.-
item.contributorSteegmans, Juno-
item.contributorVan den Bussche, Jan-
item.accessRightsOpen Access-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Query Languages for Neural Networks.pdfPublished version802.48 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.