Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/47509
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVan Hout, Alexander Wim-
dc.contributor.authorChoopani, Atefe-
dc.contributor.authorStavrakoudis, Dimitris-
dc.contributor.authorDE WITTE, Ward-
dc.contributor.authorGitas, Ioannis-
dc.contributor.authorVan Meerbeek, Koenraad-
dc.contributor.authorOTTOY, Sam-
dc.date.accessioned2025-10-14T08:14:17Z-
dc.date.available2025-10-14T08:14:17Z-
dc.date.issued2025-
dc.date.submitted2025-10-13T16:35:52Z-
dc.identifier.citationDrones, 9 (9) (Art N° 615)-
dc.identifier.urihttp://hdl.handle.net/1942/47509-
dc.description.abstractAccurate quantification of wildland fuel consumption is essential for effective fire management in Northern European heathland ecosystems, yet traditional assessment methods remain spatially limited and labour-intensive. This study combined multitemporal UAV LiDAR with SLIC superpixel-based classification to directly measure fuel consumption following a prescribed burn in a Belgian heathland. Pre- and post-fire LiDAR surveys were conducted to capture vegetation height changes. Superpixel segmentation successfully classified three vegetation types (grassland, heather and trees with understory vegetation) with 97.8% accuracy. Fuel consumption analysis revealed remarkable differences between vegetation types, with heather (mean +/- SD: 0.165 +/- 0.102 m) exhibiting the highest consumption compared to grass (0.089 +/- 0.088 m) and tree understory vegetation (0.091 +/- 0.068 m). Statistical analysis confirmed the significant differences between all vegetation types (p-value < 0.001). This methodology provides quantitative evidence for developing vegetation-specific burning protocols by demonstrating the critical importance of both pre- and post-fire remote sensing data. The approach demonstrates the effectiveness of UAV-based multitemporal LiDAR for precise fuel consumption assessment in heathland fire management.-
dc.description.sponsorshipFunding: This research was funded by the Belgian Federal Science Policy Office (BELSPO). Acknowledgments: We acknowledge the Agency of Nature and Forest and fire district Brandweerzone Oost-Limburg for safely executing the prescribed burn. We would like to thank Rúna Magnússon from Wageningen University for her valuable suggestions and feedback.-
dc.language.isoen-
dc.publisherMDPI-
dc.rights2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/ licenses/by/4.0/).-
dc.subject.otherUAV LiDAR-
dc.subject.otherfuel load-
dc.subject.othersuperpixel classification-
dc.subject.otherremote sensing-
dc.subject.otherheathland-
dc.subject.otherprescribed burning-
dc.titleEstimation of Burned Fuel Volumes in Heathland Ecosystems Using Multitemporal UAV LiDAR and Superpixel Classification-
dc.typeJournal Contribution-
dc.identifier.issue9-
dc.identifier.volume9-
local.format.pages14-
local.bibliographicCitation.jcatA1-
dc.description.notesVan Hout, AW (corresponding author), PXL Univ Coll, Biores, B-3590 Diepenbeek, Belgium.-
dc.description.notesalexander.vanhout@pxl.be; atefe.choopani@pxl.be; jstavrak@auth.gr;-
dc.description.notesward.dewitte@pxl.be; igitas@for.auth.gr;-
dc.description.noteskoenraad.vanmeerbeek@kuleuven.be; sam.ottoy@pxl.be-
local.publisher.placeMDPI AG, Grosspeteranlage 5, CH-4052 BASEL, SWITZERLAND-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr615-
dc.identifier.doi10.3390/drones9090615-
dc.identifier.isi001582244800001-
local.provider.typewosris-
local.description.affiliation[Van Hout, Alexander Wim; Choopani, Atefe; De Witte, Ward; Ottoy, Sam] PXL Univ Coll, Biores, B-3590 Diepenbeek, Belgium.-
local.description.affiliation[Choopani, Atefe; Van Meerbeek, Koenraad; Ottoy, Sam] Katholieke Univ Leuven, Div Forest Nat & Landscape, B-3001 Leuven, Belgium.-
local.description.affiliation[Stavrakoudis, Dimitris; Gitas, Ioannis] Aristotle Univ Thessaloniki, Lab Forest Management & Remote Sensing, Thessaloniki 54124, Greece.-
local.description.affiliation[De Witte, Ward; Ottoy, Sam] Hasselt Univ, Ctr Environm Sci, B-3590 Diepenbeek, Belgium.-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.fullcitationVan Hout, Alexander Wim; Choopani, Atefe; Stavrakoudis, Dimitris; DE WITTE, Ward; Gitas, Ioannis; Van Meerbeek, Koenraad & OTTOY, Sam (2025) Estimation of Burned Fuel Volumes in Heathland Ecosystems Using Multitemporal UAV LiDAR and Superpixel Classification. In: Drones, 9 (9) (Art N° 615).-
item.contributorVan Hout, Alexander Wim-
item.contributorChoopani, Atefe-
item.contributorStavrakoudis, Dimitris-
item.contributorDE WITTE, Ward-
item.contributorGitas, Ioannis-
item.contributorVan Meerbeek, Koenraad-
item.contributorOTTOY, Sam-
item.accessRightsOpen Access-
crisitem.journal.eissn2504-446X-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.