Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/47537
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWerum, Kai-
dc.contributor.authorEberhardt, Wolfgang-
dc.contributor.authorREENAERS, Dieter-
dc.contributor.authorMager, Thomas-
dc.contributor.authorEndl, Mika-
dc.contributor.authorZimmermann, Andre-
dc.contributor.authorDEFERME, Wim-
dc.date.accessioned2025-10-15T08:12:04Z-
dc.date.available2025-10-15T08:12:04Z-
dc.date.issued2025-
dc.date.submitted2025-10-13T13:25:40Z-
dc.identifier.citationMicromachines, 16 (9) (Art N° 980)-
dc.identifier.urihttp://hdl.handle.net/1942/47537-
dc.description.abstractThis paper aims to present an overview of the state-of-the-art materials and technologies that can be used to create electronic circuits on 3D plastic carriers also known as 3D electronics. Strategies for print-based and laser-based 3D electronics will be discussed as well as the techniques to apply the circuit carrier and the way interconnection technology can be used to combine electronic components on top of the circuit carrier. A basic explanation of the functional principles, materials, and applications is given for different substrate and interconnection technologies. The aim is to make it easier to compare different technologies and its required materials to make the right decisions on what technology is best suited for the job. For this purpose, comparison tables for 3D plastic circuit carrier technologies and substrate materials considering their temperature stability were created. It can be concluded that there are a lot of influencing factors that determine which technologies are best suited for application. The most important factors are the 3D complexity and the field of application, the required structure size of the circuit, and the required production quantity.-
dc.description.sponsorshipFunding: This research was funded by CORNET ACT3D, grant number 301 EN and VLAIO funding via HBC.2020.2996. The state-of-the-art was developed as part of the project and is summarized in this paper. Acknowledgments: The authors would like to acknowledge the support of the funding agencies “German Federation of Industrial Research Agencies” (AiF-Germany) and “Flanders Innovation & Entrepreneurship” (VLAIO-Belgium/Flanders).-
dc.language.isoen-
dc.publisherMDPI-
dc.rights2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/ licenses/by/4.0/).-
dc.subject.otherassembly-
dc.subject.other3D-
dc.subject.otherinterconnection technologies-
dc.subject.otherpackaging-
dc.subject.otherprinting-
dc.subject.othermechatronic integrated devices (MIDs)-
dc.subject.otherlaser direct structuring (LDS)-
dc.titleAssembly and Interconnection Technologies for 3D Plastic Circuit Carriers: An Overview of Technologies, Materials, and Applications-
dc.typeJournal Contribution-
dc.identifier.issue9-
dc.identifier.volume16-
local.format.pages46-
local.bibliographicCitation.jcatA1-
dc.description.notesWerum, K (corresponding author), Hahn Schickard Gesell Angew Forsch EV, D-70569 Stuttgart, Germany.; Werum, K (corresponding author), Univ Stuttgart, Inst Micro Integrat IFM, D-70569 Stuttgart, Germany.-
dc.description.noteskai.werum@hahn-schickard.de; wolfgang.eberhardt@hahn-schickard.de;-
dc.description.notesmika.endl@hahn-schickard.de; andre.zimmermann@ifm.uni-stuttgart.de;-
dc.description.noteswim.deferme@uhasselt.be-
local.publisher.placeMDPI AG, Grosspeteranlage 5, CH-4052 BASEL, SWITZERLAND-
local.type.refereedRefereed-
local.type.specifiedReview-
local.bibliographicCitation.artnr980-
dc.identifier.doi10.3390/mi16090980-
dc.identifier.pmid41011871-
dc.identifier.isiWOS:001580502200001-
local.provider.typewosris-
local.description.affiliation[Werum, Kai; Eberhardt, Wolfgang; Endl, Mika; Zimmermann, Andre] Hahn Schickard Gesell Angew Forsch EV, D-70569 Stuttgart, Germany.-
local.description.affiliation[Werum, Kai; Zimmermann, Andre] Univ Stuttgart, Inst Micro Integrat IFM, D-70569 Stuttgart, Germany.-
local.description.affiliation[Reenaers, Dieter; Deferme, Wim] Hasselt Univ, Inst Mat Res, Martelarenlaan 42, B-3500 Hasselt, Belgium.-
local.description.affiliation[Reenaers, Dieter; Deferme, Wim] IMEC Vzw, Div IMOMEC, Wetenschapspk 1, B-3590 Diepenbeek, Belgium.-
local.description.affiliation[Mager, Thomas] Fraunhofer Inst Mechatron Syst IEM, Zukunftsmeile 1, D-33102 Paderborn, Germany.-
local.uhasselt.internationalyes-
item.fullcitationWerum, Kai; Eberhardt, Wolfgang; REENAERS, Dieter; Mager, Thomas; Endl, Mika; Zimmermann, Andre & DEFERME, Wim (2025) Assembly and Interconnection Technologies for 3D Plastic Circuit Carriers: An Overview of Technologies, Materials, and Applications. In: Micromachines, 16 (9) (Art N° 980).-
item.accessRightsOpen Access-
item.contributorWerum, Kai-
item.contributorEberhardt, Wolfgang-
item.contributorREENAERS, Dieter-
item.contributorMager, Thomas-
item.contributorEndl, Mika-
item.contributorZimmermann, Andre-
item.contributorDEFERME, Wim-
item.fulltextWith Fulltext-
crisitem.journal.eissn2072-666X-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.