Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/47953
Full metadata record
DC FieldValueLanguage
dc.contributor.authorQi, Baojia-
dc.contributor.authorJiang, Zhaoyu-
dc.contributor.authorShen, Haixia-
dc.contributor.authorLi, Jiacheng-
dc.contributor.authorWang , Zhixiang-
dc.contributor.authorFang, Min-
dc.contributor.authorWang, Changchun-
dc.contributor.authorJiang, Youhua-
dc.contributor.authorYuan, Jingping-
dc.contributor.authorBERMEJO DELGADO, Inigo-
dc.contributor.authorDekker, Andre-
dc.contributor.authorDe Ruysscher, Dirk-
dc.contributor.authorWee, Leonard-
dc.contributor.authorZhang, Wencheng-
dc.contributor.authorJi, Yongling-
dc.contributor.authorZhang, Zhen-
dc.date.accessioned2026-01-05T11:32:41Z-
dc.date.available2026-01-05T11:32:41Z-
dc.date.issued2025-
dc.date.submitted2026-01-05T11:17:41Z-
dc.identifier.citationJournal for immunotherapy of cancer, 13 (12) (Art N° e013840)-
dc.identifier.urihttp://hdl.handle.net/1942/47953-
dc.description.abstractBackground Accurate preoperative prediction of pathological complete response (pCR) following neoadjuvant chemoimmunotherapy (nCIT) could help individualize treatment for patients with esophageal squamous cell carcinoma (ESCC). This study aimed to develop and externally validate an interpretable multimodal machine learning framework that integrates CT radiomics and H&E-stained whole-slide images pathomics to predict pCR.Methods In this multicenter, retrospective study, 335 patients with ESCC who received nCIT followed by esophagectomy were enrolled from three institutions. Patients from one center were divided into a training set (181 patients) and an internal test set (115 patients), while data from the other two centers comprised an external test set (39 patients). We developed unimodal radiomics and pathomics models, and two multimodal fusion models-an intermediate fusion model (MIFM) and a late fusion model (MLFM). Model performance was evaluated using the area under the curve (AUC), accuracy, sensitivity, specificity, and F1 score, with exploratory survival stratification by observed and model-predicted pCR status. Interpretability was treated as a design constraint and operationalized at both the feature and model levels.Results The MIFM outperformed unimodal models and the MLFM across all cohorts, achieving AUC/accuracy/sensitivity/specificity/F1 score of 0.97/0.93/0.84/0.96/0.86 (training set), 0.78/0.87/0.62/0.93/0.63 (internal test set), and 0.76/0.77/0.54/0.88/0.61 (external test set). Both observed and predicted pCR status showed exploratory prognostic stratification for overall survival. Feature definitions were mathematically or morphologically explicit, and case-level/cohort-level explanations together with decision-pathway views provided insights into model reasoning. We additionally provide a user-friendly Graphical User Interface to facilitate clinical practice.Conclusions We developed and externally validated an interpretable radiopathomics fusion framework that predicts pCR after nCIT in ESCC using standard-of-care data. This model holds promise as an effective tool for guiding individualized decisions between surveillance and timely surgery.-
dc.description.sponsorshipThis study was funded by the National Natural Science Foundation of China (No. 82303672, 82573437) and Zhejiang Medical and Health Science and Technology Project (No. 2022KY637).-
dc.language.isoen-
dc.publisherBMJ PUBLISHING GROUP-
dc.rightsAuthor(s) (or their employer(s)) 2025. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ Group.This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See https://creativecommons.org/licenses/by-nc/4.0/.-
dc.subject.otherEsophageal Cancer-
dc.subject.otherPathologic complete response - pCR-
dc.subject.otherComputed tomography-
dc.subject.otherPathology-
dc.titleInterpretable multimodal radiopathomics model predicting pathological complete response to neoadjuvant chemoimmunotherapy in esophageal squamous cell carcinoma-
dc.typeJournal Contribution-
dc.identifier.issue12-
dc.identifier.volume13-
local.format.pages15-
local.bibliographicCitation.jcatA1-
dc.description.notesJi, YL; Zhang, Z (corresponding author), Zhejiang Canc Hosp, Hangzhou Inst Med HIM, Chinese Acad Sci, Hangzhou 310022, Zhejiang, Peoples R China.; Zhang, Z (corresponding author), Maastricht Univ, GROW Res Inst Oncol & Reprod, Dept Radiat Oncol Maastro, Maastricht, Netherlands.; Zhang, Z (corresponding author), Tianjin Med Univ Canc Inst & Hosp, Natl Clin Res Ctr Canc, Tianjins Clin Res Ctr Canc, Dept Radiat Oncol,Key Lab Canc Prevent & Therapy, Tianjin 300060, Peoples R China.-
dc.description.noteschasexun@163.com; 1565247563@qq.com; c39329@163.com;-
dc.description.notesjiachengli0107@163.com; zhwang93@163.com; fangmin@zjcc.org.cn;-
dc.description.notes1027738768@qq.com; 1149607024@qq.com; 1173543323@qq.com;-
dc.description.notesinigo.bermejo@uhasselt.be; andre.dekker@maastro.nl;-
dc.description.notesdirk.deruysscher@maastro.nl; leonard.wee@maastro.nl; wczhang@tmu.edu.cn;-
dc.description.notesjiyl@zjcc.org.cn; zhen.zhang@maastro.nl-
local.publisher.placeBRITISH MED ASSOC HOUSE, TAVISTOCK SQUARE, LONDON WC1H 9JR, ENGLAND-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnre013840-
dc.identifier.doi10.1136/jitc-2025-013840-
dc.identifier.pmid41423263-
dc.identifier.isi001643902500001-
local.provider.typewosris-
local.description.affiliation[Qi, Baojia; Jiang, Zhaoyu; Shen, Haixia; Fang, Min; Wang, Changchun; Jiang, Youhua; Ji, Yongling; Zhang, Zhen] Zhejiang Canc Hosp, Hangzhou Inst Med HIM, Chinese Acad Sci, Hangzhou 310022, Zhejiang, Peoples R China.-
local.description.affiliation[Qi, Baojia; Shen, Haixia; Dekker, Andre; De Ruysscher, Dirk; Wee, Leonard; Zhang, Zhen] Maastricht Univ, GROW Res Inst Oncol & Reprod, Dept Radiat Oncol Maastro, Maastricht, Netherlands.-
local.description.affiliation[Jiang, Zhaoyu] Nanjing Med Univ, Sch Publ Hlth, Nanjing, Jiangsu, Peoples R China.-
local.description.affiliation[Li, Jiacheng; Zhang, Wencheng; Zhang, Zhen] Tianjin Med Univ Canc Inst & Hosp, Natl Clin Res Ctr Canc, Tianjins Clin Res Ctr Canc, Dept Radiat Oncol,Key Lab Canc Prevent & Therapy, Tianjin 300060, Peoples R China.-
local.description.affiliation[Wang, Zhixiang] Capital Med Univ, Beijing Friendship Hosp, Dept Ultrasound, Beijing 100050, Peoples R China.-
local.description.affiliation[Yuan, Jingping] Wuhan Univ, Renmin Hosp, Dept Pathol, Wuhan, Hubei, Peoples R China.-
local.description.affiliation[Bermejo, Inigo] Hasselt Univ, Data Sci Inst DSI, Hasselt, Belgium.-
local.uhasselt.internationalyes-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
item.fullcitationQi, Baojia; Jiang, Zhaoyu; Shen, Haixia; Li, Jiacheng; Wang , Zhixiang; Fang, Min; Wang, Changchun; Jiang, Youhua; Yuan, Jingping; BERMEJO DELGADO, Inigo; Dekker, Andre; De Ruysscher, Dirk; Wee, Leonard; Zhang, Wencheng; Ji, Yongling & Zhang, Zhen (2025) Interpretable multimodal radiopathomics model predicting pathological complete response to neoadjuvant chemoimmunotherapy in esophageal squamous cell carcinoma. In: Journal for immunotherapy of cancer, 13 (12) (Art N° e013840).-
item.contributorQi, Baojia-
item.contributorJiang, Zhaoyu-
item.contributorShen, Haixia-
item.contributorLi, Jiacheng-
item.contributorWang , Zhixiang-
item.contributorFang, Min-
item.contributorWang, Changchun-
item.contributorJiang, Youhua-
item.contributorYuan, Jingping-
item.contributorBERMEJO DELGADO, Inigo-
item.contributorDekker, Andre-
item.contributorDe Ruysscher, Dirk-
item.contributorWee, Leonard-
item.contributorZhang, Wencheng-
item.contributorJi, Yongling-
item.contributorZhang, Zhen-
crisitem.journal.eissn2051-1426-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
e013840.full.pdfPublished version5.44 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.