Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/48003
Title: On k-Summable Normal Forms of Vector Fields with One Zero Eigenvalue
Authors: DE MAESSCHALCK, Peter 
Kristiansen, Kristian Uldall
Issue Date: 2025
Publisher: SPRINGER BASEL AG
Source: Qualitative Theory of Dynamical Systems, 25 (1) (Art N° 4)
Abstract: In this paper, we study normal forms of analytic saddle-nodes in Cn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb C<^>{n+1}$$\end{document} with any Poincar & eacute; rank k is an element of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\in \mathbb N$$\end{document}. The approach and the results generalize those of Bonckaert and De Maesschalck from 2008 that considered k=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=1$$\end{document}. In particular, we introduce a Banach convolutional algebra that is tailored to study differential equations in the Borel plane of order k. One of the subtleties that we take care of in this paper, is that nontrivial Jordan blocks are allowed in the linear part of the vector field. We anticipate that our approach can stimulate new research and be used to study different normal forms in future work.
Notes: Kristiansen, KU (corresponding author), Tech Univ Denmark, DK-2800 Lyngby, Denmark.
peter.demaesschalck@uhasselt.be; krkri@dtu.dk
Keywords: Normal forms;Center manifolds;Gevrey properties;Summability;Saddle-nodes
Document URI: http://hdl.handle.net/1942/48003
ISSN: 1575-5460
e-ISSN: 1662-3592
DOI: 10.1007/s12346-025-01429-1
ISI #: 001637732200001
Rights: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025
Category: A1
Type: Journal Contribution
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
s12346-025-01429-1.pdf
  Restricted Access
Published version549.33 kBAdobe PDFView/Open    Request a copy
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.