Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/48157Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | DE MAESSCHALCK, Peter | - |
| dc.contributor.author | HUZAK, Renato | - |
| dc.contributor.author | PEREZ, Otavio | - |
| dc.date.accessioned | 2026-01-16T10:44:51Z | - |
| dc.date.available | 2026-01-16T10:44:51Z | - |
| dc.date.issued | 2026 | - |
| dc.date.submitted | 2026-01-05T13:32:18Z | - |
| dc.identifier.citation | Journal of Differential Equations, 460 (Art N° 114079) | - |
| dc.identifier.uri | http://hdl.handle.net/1942/48157 | - |
| dc.description.abstract | The main purpose of this paper is to study limit cycles of non-linear regularizations of planar piecewise smooth systems. We deal with a slow-fast Hopf point after non-linear regularization and blow-up. We give a simple criterion for the existence of limit cycles of canard type blue for a class of (non-linearly) regularized piecewise smooth systems, expressed in terms of zeros of the slow divergence integral. Using the criterion we can construct a quadratic regularization of a piecewise linear center such that for any integer k > 0 it has at least k + 1 limit cycles, for a suitably chosen monotonic transition function φk : R → R. We prove a similar result for regularized codimension 1 invisible-invisible fold-fold singularities of type II2. Canard cycles of dodging layer are also considered, and we prove that there can be at most 2 limit cycles (born in a saddle-node bifurcation). | - |
| dc.language.iso | en | - |
| dc.publisher | - | |
| dc.subject.other | Geometric singular perturbation theory | - |
| dc.subject.other | Non-linear regularization | - |
| dc.subject.other | Piecewise smooth vector fields | - |
| dc.subject.other | Slow divergence integral | - |
| dc.subject.other | Slow-fast Hopf point | - |
| dc.title | Canard cycles of non-linearly regularized piecewise smooth vector fields | - |
| dc.type | Journal Contribution | - |
| dc.identifier.volume | 460 | - |
| local.format.pages | 32 | - |
| local.bibliographicCitation.jcat | A1 | - |
| local.type.refereed | Refereed | - |
| local.type.specified | Article | - |
| local.bibliographicCitation.artnr | 114079 | - |
| dc.identifier.doi | 10.1016/j.jde.2025.114079 | - |
| local.provider.type | - | |
| local.uhasselt.international | yes | - |
| item.contributor | DE MAESSCHALCK, Peter | - |
| item.contributor | HUZAK, Renato | - |
| item.contributor | PEREZ, Otavio | - |
| item.accessRights | Open Access | - |
| item.fullcitation | DE MAESSCHALCK, Peter; HUZAK, Renato & PEREZ, Otavio (2026) Canard cycles of non-linearly regularized piecewise smooth vector fields. In: Journal of Differential Equations, 460 (Art N° 114079). | - |
| item.fulltext | With Fulltext | - |
| crisitem.journal.issn | 0022-0396 | - |
| crisitem.journal.eissn | 1090-2732 | - |
| Appears in Collections: | Research publications | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Paper2026.pdf | Peer-reviewed author version | 607.43 kB | Adobe PDF | View/Open |
| 1-s2.0-S0022039625011064-main.pdf Restricted Access | Published version | 1.31 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.