Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/48243
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCIACH, Michal-
dc.contributor.authorGuo, Dan-
dc.contributor.authorBemis, Kylie Ariel-
dc.contributor.authorVALKENBORG, Dirk-
dc.contributor.authorVitek, Olga-
dc.contributor.authorGambin, Anna-
dc.date.accessioned2026-01-23T14:43:51Z-
dc.date.available2026-01-23T14:43:51Z-
dc.date.issued2026-
dc.date.submitted2026-01-16T14:16:19Z-
dc.identifier.citationAnalytical Chemistry, 98 (1) , p. 364 -375-
dc.identifier.urihttp://hdl.handle.net/1942/48243-
dc.description.abstractMass Spectrometry Imaging (MSI) data sets are markedly different from optical images. However, analysis algorithms often overlook the intricacies of this kind of data. In MSI, a frequently observed phenomenon is variability in signal intensity between pixels caused by factors other than differences in analyte concentrations. Another common issue is the presence of ions with overlapping isotopic envelopes resulting in isobaric interference. The first factor causes random variations of the signal from the same anatomical regions. The second can cause the spatial distribution of a single peak to represent a mixture of spatial distributions of several analytes. Both factors affect the accuracy of data analysis methods such as MSI segmentation. In this article, we demonstrate that accounting for the intricate structure of MSI data can increase the accuracy of the analysis results. We propose an approach that leverages recent advancements in computational mass spectrometry to separate overlapping isotopic envelopes and mitigate pixel-to-pixel variability of signal intensity. We implemented the approach in spatialstein, an open-source workflow that provides a tentative annotation of an MSI data set with molecular formulas, generates a deconvolved ion image for each annotated ion, and segments each deconvolved ion image into regions of distinct intensity of the corresponding analyte. The structure of the workflow is modular, making it highly modifiable and applicable, whole or in parts, to other studies. The spatialstein workflow is available at https://github.com/mciach/spatialstein.-
dc.description.sponsorshipACKNOWLEDGMENTS This work was supported by National Science Centre, Poland, grant number 2021/41/B/ST6/03526. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 101244218. We acknowledge the BioGeMT Team (HORIZON-WIDERA2022 Grant ID: 101086768). We thank dr Panagiotis Alexiou for useful discussions.-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.rights2026 The Authors. Published by American Chemical Societ. Open access-
dc.titlespatialstein: An Open-Source Workflow for Annotation, Deconvolution, and Spatially Aware Segmentation of Mass Spectrometry Imaging Data-
dc.typeJournal Contribution-
dc.identifier.epage375-
dc.identifier.issue1-
dc.identifier.spage364-
dc.identifier.volume98-
local.format.pages12-
local.bibliographicCitation.jcatA1-
dc.description.notesCiach, MA (corresponding author), Univ Malta, Fac Hlth Sci, Dept Appl Biomed Sci, MSD-2080 Msida, Malta.; Ciach, MA (corresponding author), Univ Warsaw, Fac Math Informat & Mech, PL-02097 Warsaw, Poland.; Ciach, MA (corresponding author), Hasselt Univ, Data Sci Inst, B-3590 Diepenbeek, Belgium.; Vitek, O (corresponding author), Northeastern Univ, Khoury Coll Comp Sci, Boston, MA 02115 USA.; Vitek, O (corresponding author), Northeastern Univ, Barnett Inst, Boston, MA 02115 USA.-
dc.description.notesmichal.ciach@um.edu.mt; vitek.olga@gmail.com-
local.publisher.place1155 16TH ST, NW, WASHINGTON, DC 20036 USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.type.programmeH2020-
local.relation.h2020101244218-
dc.identifier.doi10.1021/acs.analchem.5c04737-
dc.identifier.pmid41480866-
dc.identifier.isi001653544900001-
local.provider.typewosris-
local.description.affiliation[Ciach, Michal Aleksander] Univ Malta, Fac Hlth Sci, Dept Appl Biomed Sci, MSD-2080 Msida, Malta.-
local.description.affiliation[Ciach, Michal Aleksander; Gambin, Anna] Univ Warsaw, Fac Math Informat & Mech, PL-02097 Warsaw, Poland.-
local.description.affiliation[Ciach, Michal Aleksander; Valkenborg, Dirk] Hasselt Univ, Data Sci Inst, B-3590 Diepenbeek, Belgium.-
local.description.affiliation[Guo, Dan; Bemis, Kylie Ariel; Vitek, Olga] Northeastern Univ, Khoury Coll Comp Sci, Boston, MA 02115 USA.-
local.description.affiliation[Guo, Dan; Bemis, Kylie Ariel; Vitek, Olga] Northeastern Univ, Barnett Inst, Boston, MA 02115 USA.-
local.uhasselt.internationalyes-
item.fullcitationCIACH, Michal; Guo, Dan; Bemis, Kylie Ariel; VALKENBORG, Dirk; Vitek, Olga & Gambin, Anna (2026) spatialstein: An Open-Source Workflow for Annotation, Deconvolution, and Spatially Aware Segmentation of Mass Spectrometry Imaging Data. In: Analytical Chemistry, 98 (1) , p. 364 -375.-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
item.contributorCIACH, Michal-
item.contributorGuo, Dan-
item.contributorBemis, Kylie Ariel-
item.contributorVALKENBORG, Dirk-
item.contributorVitek, Olga-
item.contributorGambin, Anna-
crisitem.journal.issn0003-2700-
crisitem.journal.eissn1520-6882-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
acs.analchem.pdfPublished version4.3 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.