Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/48337
Full metadata record
DC FieldValueLanguage
dc.contributor.authorASGHAR, Sabia-
dc.contributor.authorPENG, Qiyao-
dc.contributor.authorVERMOLEN, Fred-
dc.contributor.authorVuik, C-
dc.date.accessioned2026-02-02T08:08:08Z-
dc.date.available2026-02-02T08:08:08Z-
dc.date.issued2026-
dc.date.submitted2026-01-29T11:53:14Z-
dc.identifier.citationResults in Applied Mathematics, 29 (Art N° 100686)-
dc.identifier.urihttp://hdl.handle.net/1942/48337-
dc.description.abstractThe efficient inversion of matrix polynomials is a critical challenge in computational mathematics. We design a procedure to determine the inverse of matrices polynomial of multidimensional Laplace matrices. The method is based on eigenvector and eigenvalue expansions. The method is consistent with previously known expressions of the inverse discretized Laplacian in one spatial dimension (Vermolen et al., 2022). The formalism is further extended to obtain closed form expressions for time-dependent problems.-
dc.language.isoen-
dc.publisher-
dc.subject.otherLaplace matrix-
dc.subject.otherInverse matrix-
dc.subject.otherSolution to linear systems-
dc.subject.otherEigenvector expansion-
dc.titleOn the inversion of polynomials of discrete Laplace matrices-
dc.typeJournal Contribution-
dc.identifier.volume29-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr100686-
dc.identifier.doi10.1016/j.rinam.2026.100686-
dc.identifier.eissn-
local.provider.typePdf-
local.uhasselt.internationalyes-
item.fullcitationASGHAR, Sabia; PENG, Qiyao; VERMOLEN, Fred & Vuik, C (2026) On the inversion of polynomials of discrete Laplace matrices. In: Results in Applied Mathematics, 29 (Art N° 100686).-
item.fulltextWith Fulltext-
item.contributorASGHAR, Sabia-
item.contributorPENG, Qiyao-
item.contributorVERMOLEN, Fred-
item.contributorVuik, C-
item.accessRightsOpen Access-
crisitem.journal.issn2590-0374-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
1-s2.0-S259003742600004X-main.pdfPublished version2.05 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.