Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/5005
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAERTS, Marc-
dc.contributor.authorHENS, Niel-
dc.contributor.authorMOLENBERGHS, Geert-
dc.date.accessioned2007-12-20T15:54:43Z-
dc.date.available2007-12-20T15:54:43Z-
dc.date.issued2004-
dc.identifier.citationBiggeri, Annibale; Dreassi, Emanuela; Lagazio, Corrado; Marchi, Marco (Ed.). Proceedings of the 19th International Workshop on Statistical Modelling. p. 43-47.-
dc.identifier.isbn8884531934-
dc.identifier.urihttp://hdl.handle.net/1942/5005-
dc.description.abstractThe Akaiki Information Criterion, AIC, is one of the leading selection methods for regression models. In case of partially missing covariates with missingness probability depending on the response, regression estimates based on the so-called complete cases are known to be biased. In this contribution it is shown that model selection using AIC-values based on the complete cases can lead to the choice of wrong or less optimal models. In analogy with the weighted Horvitz-Thompson estimator, we propose a weighted version of AIC. It is shown that this weighted AIC criterion improves model choices.-
dc.language.isoen-
dc.publisherFirenze University Press-
dc.rights(C) 2004 Firenze University Press-
dc.subject.otherAkaiki information criterion; missing data; model selection; weighted likelihood-
dc.titleModel selection for regression analyses with missing data-
dc.typeProceedings Paper-
local.bibliographicCitation.conferencedate04-08/07/2004-
local.bibliographicCitation.conferencenameProceedings of the 19th International Workshop on Statistical Modelling-
local.bibliographicCitation.conferenceplaceFlorence, Italy-
dc.identifier.epage47-
dc.identifier.spage43-
local.bibliographicCitation.jcatC2-
local.publisher.placeBorgo Albizi, 28, 50122 Firenze, Italy-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
dc.bibliographicCitation.oldjcatC2-
dc.identifier.urlhttp://www.statmod.org/files/proceedings/iwsm2004_proceedings.pdf-
local.bibliographicCitation.btitleProceedings of the 19th International Workshop on Statistical Modelling-
item.fulltextWith Fulltext-
item.contributorAERTS, Marc-
item.contributorHENS, Niel-
item.contributorMOLENBERGHS, Geert-
item.fullcitationAERTS, Marc; HENS, Niel & MOLENBERGHS, Geert (2004) Model selection for regression analyses with missing data. In: Biggeri, Annibale; Dreassi, Emanuela; Lagazio, Corrado; Marchi, Marco (Ed.). Proceedings of the 19th International Workshop on Statistical Modelling. p. 43-47..-
item.accessRightsClosed Access-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
iwsm2004_proceedings-63-67.pdf67.15 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.