Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/5005
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | AERTS, Marc | - |
dc.contributor.author | HENS, Niel | - |
dc.contributor.author | MOLENBERGHS, Geert | - |
dc.date.accessioned | 2007-12-20T15:54:43Z | - |
dc.date.available | 2007-12-20T15:54:43Z | - |
dc.date.issued | 2004 | - |
dc.identifier.citation | Biggeri, Annibale; Dreassi, Emanuela; Lagazio, Corrado; Marchi, Marco (Ed.). Proceedings of the 19th International Workshop on Statistical Modelling. p. 43-47. | - |
dc.identifier.isbn | 8884531934 | - |
dc.identifier.uri | http://hdl.handle.net/1942/5005 | - |
dc.description.abstract | The Akaiki Information Criterion, AIC, is one of the leading selection methods for regression models. In case of partially missing covariates with missingness probability depending on the response, regression estimates based on the so-called complete cases are known to be biased. In this contribution it is shown that model selection using AIC-values based on the complete cases can lead to the choice of wrong or less optimal models. In analogy with the weighted Horvitz-Thompson estimator, we propose a weighted version of AIC. It is shown that this weighted AIC criterion improves model choices. | - |
dc.language.iso | en | - |
dc.publisher | Firenze University Press | - |
dc.rights | (C) 2004 Firenze University Press | - |
dc.subject.other | Akaiki information criterion; missing data; model selection; weighted likelihood | - |
dc.title | Model selection for regression analyses with missing data | - |
dc.type | Proceedings Paper | - |
local.bibliographicCitation.conferencedate | 04-08/07/2004 | - |
local.bibliographicCitation.conferencename | Proceedings of the 19th International Workshop on Statistical Modelling | - |
local.bibliographicCitation.conferenceplace | Florence, Italy | - |
dc.identifier.epage | 47 | - |
dc.identifier.spage | 43 | - |
local.bibliographicCitation.jcat | C2 | - |
local.publisher.place | Borgo Albizi, 28, 50122 Firenze, Italy | - |
local.type.refereed | Refereed | - |
local.type.specified | Proceedings Paper | - |
dc.bibliographicCitation.oldjcat | C2 | - |
dc.identifier.url | http://www.statmod.org/files/proceedings/iwsm2004_proceedings.pdf | - |
local.bibliographicCitation.btitle | Proceedings of the 19th International Workshop on Statistical Modelling | - |
item.fulltext | With Fulltext | - |
item.contributor | AERTS, Marc | - |
item.contributor | HENS, Niel | - |
item.contributor | MOLENBERGHS, Geert | - |
item.fullcitation | AERTS, Marc; HENS, Niel & MOLENBERGHS, Geert (2004) Model selection for regression analyses with missing data. In: Biggeri, Annibale; Dreassi, Emanuela; Lagazio, Corrado; Marchi, Marco (Ed.). Proceedings of the 19th International Workshop on Statistical Modelling. p. 43-47.. | - |
item.accessRights | Closed Access | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
iwsm2004_proceedings-63-67.pdf | 67.15 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.