Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/5223
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCOPELLI LOPES DA SILVA, MAURO-
dc.contributor.authorEichhorn, R.-
dc.contributor.authorKinouchi, O.-
dc.contributor.authorBiehl, M.-
dc.contributor.authorSimonetti, R.-
dc.contributor.authorRiegler, P.-
dc.contributor.authorCaticha, N.-
dc.date.accessioned2007-12-20T15:56:45Z-
dc.date.available2007-12-20T15:56:45Z-
dc.date.issued1997-
dc.identifier.citationEurophysics letters, 37(6). p. 427-432-
dc.identifier.issn0295-5075-
dc.identifier.urihttp://hdl.handle.net/1942/5223-
dc.description.abstractThe training of multilayered neural networks in the presence of different types of noise is studied. We consider the learning of realizable rules in nonoverlapping architectures. Achieving optimal generalization depends on the knowledge of the noise level, however its misestimation may lead to partial or complete loss of the generalization ability. We demonstrate this effect in the framework of online learning and present the results in terms of noise robustness phase diagrams. While for additive (weight) noise the robustness properties depend on the architecture and size of the networks, this is not so for multiplicative (output) noise. In this case we find a universal behaviour independent of the machine size for both the tree parity and committee machines.-
dc.language.isoen-
dc.publisherEDITIONS PHYSIQUE-
dc.rightsLes Editions de Physique.-
dc.subject.otherStatistical-Mechanics-
dc.subject.otherExamples-
dc.titleNoise robustness in multilayer neural network-
dc.typeJournal Contribution-
dc.identifier.epage432-
dc.identifier.issue6-
dc.identifier.spage427-
dc.identifier.volume37-
local.bibliographicCitation.jcatA1-
local.publisher.placeZ I DE COURTABOEUF AVE 7 AV DU HOGGAR, BP 112, 91944 LES ULIS CEDEX, FRANCE-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcat-
dc.identifier.doi10.1209/epl/i1997-00167-2-
dc.identifier.isiWOS:A1997WL76800009-
dc.identifier.eissn-
local.provider.typeWeb of Science-
local.uhasselt.uhpubyes-
item.fullcitationCOPELLI LOPES DA SILVA, MAURO; Eichhorn, R.; Kinouchi, O.; Biehl, M.; Simonetti, R.; Riegler, P. & Caticha, N. (1997) Noise robustness in multilayer neural network. In: Europhysics letters, 37(6). p. 427-432.-
item.contributorCOPELLI LOPES DA SILVA, MAURO-
item.contributorEichhorn, R.-
item.contributorKinouchi, O.-
item.contributorBiehl, M.-
item.contributorSimonetti, R.-
item.contributorRiegler, P.-
item.contributorCaticha, N.-
item.fulltextWith Fulltext-
item.accessRightsClosed Access-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
_M._Copelli_1997_EPL_37_427.pdf901.27 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.