Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/733
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | TUYLS, Karl | - |
dc.contributor.author | Maes, Sam | - |
dc.contributor.author | Manderick, Bernard | - |
dc.date.accessioned | 2005-04-20T06:55:55Z | - |
dc.date.available | 2005-04-20T06:55:55Z | - |
dc.date.issued | 2003 | - |
dc.identifier.citation | ROBOCUP 2002: ROBOT SOCCER WORLD CUP VI. p. 319-326 | - |
dc.identifier.isbn | 3-540-40666-2 | - |
dc.identifier.issn | 0302-9743 | - |
dc.identifier.uri | http://hdl.handle.net/1942/733 | - |
dc.description.abstract | Large state spaces and incomplete information are two problems that stand out in learning in multi-agent systems. In this paper we tackle them both by using a combination of decision trees and Bayesian networks (BNs) to model the environment and the Q-function. Simulated robotic soccer is used as a testbed, since there agents are faced with both large state spaces and incomplete information. The long-term goal of this research is to define generic techniques that allow agents to learn in large-scaled multi-agent systems. | - |
dc.format.extent | 169368 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en | - |
dc.publisher | Springer | - |
dc.relation.ispartofseries | LECTURE NOTES IN ARTIFICIAL INTELLIGENCE | - |
dc.title | Reinforcement Learning in Large State Spaces Simulated Robotic Soccer as a Testbed | - |
dc.type | Journal Contribution | - |
local.bibliographicCitation.conferencename | ROBOCUP 2002: ROBOT SOCCER WORLD CUP VI | - |
dc.identifier.epage | 326 | - |
dc.identifier.spage | 319 | - |
local.bibliographicCitation.jcat | A1 | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
local.relation.ispartofseriesnr | 2752 | - |
dc.bibliographicCitation.oldjcat | A1 | - |
dc.identifier.doi | 10.1007/b11927 | - |
dc.identifier.isi | 000185884000027 | - |
item.fulltext | With Fulltext | - |
item.contributor | TUYLS, Karl | - |
item.contributor | Maes, Sam | - |
item.contributor | Manderick, Bernard | - |
item.fullcitation | TUYLS, Karl; Maes, Sam & Manderick, Bernard (2003) Reinforcement Learning in Large State Spaces Simulated Robotic Soccer as a Testbed. In: ROBOCUP 2002: ROBOT SOCCER WORLD CUP VI. p. 319-326. | - |
item.accessRights | Closed Access | - |
crisitem.journal.issn | 0302-9743 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Tuylsrl-robo02.pdf | 165.4 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.