Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/737
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEGGHE, Leo-
dc.date.accessioned2005-04-20T07:00:39Z-
dc.date.available2005-04-20T07:00:39Z-
dc.date.issued2005-
dc.identifier.citationJournal of the American Society for Information Science and Technology, 56(7). p. 664-668-
dc.identifier.issn1532-2882-
dc.identifier.urihttp://hdl.handle.net/1942/737-
dc.description.abstractThe discrete Lotka power function describes the number of sources (e.g., authors) with n=1, 2, 3, . . items (e.g., publications). As in econometrics, informetrics theory requires functions of a continuous variable j, replacing the discrete variable n. Now j represents item densities instead of number of items. The continuous Lotka power function describes the density of sources with item density j. The discrete Lotka function one obtains from data, obtained empirically; the continuous Lotka function is the one needed when one wants to apply Lotkaian informetrics, i.e., to determine properties that can be derived from the (continuous) model. It is, hence, important to know the relations between the two models. We show that the exponents of the discrete Lotka function (if not too high, i.e., within limits encountered in practice) and of the continuous Lotka function are approximately the same. This is important to know in applying theoretical results (from the continuous model), derived from practical data.-
dc.format.extent234841 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoen-
dc.publisherWiley-
dc.subject.otherDiscrete Lotka function; continuous Lotka function; power function-
dc.titleRelations between the continuous and the discrete Lotka power function-
dc.typeJournal Contribution-
dc.identifier.epage668-
dc.identifier.issue7-
dc.identifier.spage664-
dc.identifier.volume56-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1002/asi.20157-
dc.identifier.isi000228634800001-
item.contributorEGGHE, Leo-
item.fullcitationEGGHE, Leo (2005) Relations between the continuous and the discrete Lotka power function. In: Journal of the American Society for Information Science and Technology, 56(7). p. 664-668.-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
item.validationecoom 2006-
crisitem.journal.issn1532-2882-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
relations 1.pdf
  Restricted Access
Published version72.92 kBAdobe PDFView/Open    Request a copy
relations 2.pdfPeer-reviewed author version369.57 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.