Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/7652
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHABER, Tom-
dc.contributor.authorMERTENS, Tom-
dc.contributor.authorBEKAERT, Philippe-
dc.contributor.authorVAN REETH, Frank-
dc.date.accessioned2007-12-20T16:18:10Z-
dc.date.available2007-12-20T16:18:10Z-
dc.date.issued2005-
dc.identifier.citationProceedings of Graphics Interface 2005 (GI2005). p. 79-86.-
dc.identifier.isbn1-56881-265-5-
dc.identifier.issn0713-5424-
dc.identifier.urihttp://hdl.handle.net/1942/7652-
dc.description.abstractTo faithfully display objects consisting of translucent materials such as milk, fruit, wax and marble, one needs to take into account subsurface scattering of light. Accurate renderings require expensive simulation of light transport. Alternatively, the widely-used fast dipole approximation [15] cannot deal with internal visibility issues, and has limited applicability (only homogeneous materials). We present a novel algorithm to plausibly reproduce subsurface scattering based on the diffusion approximation. This yields a relatively simple partial differential equation, which we propose to solve numerically using the multigrid method. The main dif culty in this approach consists of accurately representing interactions near the object's surface, for which we employ the embedded boundary discretization [5, 16]. Also, our method allows us to re ne the simulation hierarchically where needed in order to optimize performance and memory usage. The resulting approach is capable of rapidly and accurately computing subsurface scattering in polygonal meshes for both homogeneous and heterogeneous materials. The amount of time spent computing subsurface scattering in a complex object is generally a few minutes.-
dc.format.extent1979896 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoen-
dc.publisherCanadian Human-Computer Communications Society-
dc.relation.ispartofseriesACM International Conference Proceeding Series-
dc.titleA computational approach to simulate subsurface light diffusion in arbitrarily shaped objects-
dc.typeProceedings Paper-
local.bibliographicCitation.conferencedate9-11 May 2005-
local.bibliographicCitation.conferencenameGraphics Interface 2005 (GI2005)-
local.bibliographicCitation.conferenceplaceVictoria, British Columbia-
dc.identifier.epage86-
dc.identifier.spage79-
local.bibliographicCitation.jcatC1-
local.type.specifiedProceedings Paper-
local.relation.ispartofseriesnr112-
dc.bibliographicCitation.oldjcatC2-
local.identifier.vabbc:vabb:371378-
dc.identifier.urlhttp://portal.acm.org/citation.cfm?id=1089508.1089522&coll=GUIDE&dl=GUIDE&type=series&idx=SERIES10714&part=series&WantType=Proceedings&title=AICPS&CFID=4159153&CFTOKEN=86841728-
local.bibliographicCitation.btitleProceedings of Graphics Interface 2005 (GI2005)-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.fullcitationHABER, Tom; MERTENS, Tom; BEKAERT, Philippe & VAN REETH, Frank (2005) A computational approach to simulate subsurface light diffusion in arbitrarily shaped objects. In: Proceedings of Graphics Interface 2005 (GI2005). p. 79-86..-
item.validationvabb 2015-
item.contributorHABER, Tom-
item.contributorMERTENS, Tom-
item.contributorBEKAERT, Philippe-
item.contributorVAN REETH, Frank-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
05-1.pdfPeer-reviewed author version1.93 MBAdobe PDFView/Open
Show simple item record

Page view(s)

24
checked on Aug 2, 2022

Download(s)

4
checked on Aug 2, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.