Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/778Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | EGGHE, Leo | - |
| dc.contributor.author | Michel, Ch. | - |
| dc.date.accessioned | 2005-05-27T11:22:55Z | - |
| dc.date.available | 2005-05-27T11:22:55Z | - |
| dc.date.issued | 2003 | - |
| dc.identifier.citation | Information Processing & Management, 39(5). p. 771-807 | - |
| dc.identifier.issn | 0306-4573 | - |
| dc.identifier.uri | http://hdl.handle.net/1942/778 | - |
| dc.description.abstract | Ordered sets of documents are encountered more and more in information distribution systems, such as information retrieval systems. Classical similarity measures for ordinary sets of documents hence need to be extended to these ordered sets. This is done in this paper using fuzzy set techniques. First a general similarity measure is developed which contains the classical strong similarity measures such as Jaccard, Dice, Cosine and which contains the classical weak similarity measures such as Recall and Precision. Then these measures are extended to comparing fuzzy sets of documents. Measuring the similarity for ordered sets of documents is a special case of this, where, the higher the rank of a document, the lower its weight is in the fuzzy set. Concrete forms of these similarity measures are presented. All these measures are new and the ones for the weak similarity measures are the first of this kind (other strong similarity measures have been given in a previous paper by Egghe and Michel). Some of these measures are then tested in the IR-system Profil-Doc. The engine SPIRITĀ© extracts ranked documents sets in three different contexts, each for 600 request. The practical useability of the OS-measures is then discussed based on these experiments. | - |
| dc.format.extent | 846318 bytes | - |
| dc.format.mimetype | application/pdf | - |
| dc.language.iso | en | - |
| dc.publisher | Elsevier | - |
| dc.subject.other | similarity measure; ordered set; fuzzy | - |
| dc.title | Construction of weak and strong similarity measures for ordered sets of documents using fuzzy set techniques | - |
| dc.type | Journal Contribution | - |
| dc.identifier.epage | 807 | - |
| dc.identifier.issue | 5 | - |
| dc.identifier.spage | 771 | - |
| dc.identifier.volume | 39 | - |
| local.bibliographicCitation.jcat | A1 | - |
| local.type.refereed | Refereed | - |
| local.type.specified | Article | - |
| dc.bibliographicCitation.oldjcat | A1 | - |
| dc.identifier.doi | 10.1016/S0306-4573(02)00027-4 | - |
| dc.identifier.isi | 000184327400006 | - |
| item.fulltext | With Fulltext | - |
| item.fullcitation | EGGHE, Leo & Michel, Ch. (2003) Construction of weak and strong similarity measures for ordered sets of documents using fuzzy set techniques. In: Information Processing & Management, 39(5). p. 771-807. | - |
| item.contributor | EGGHE, Leo | - |
| item.contributor | Michel, Ch. | - |
| item.validation | ecoom 2004 | - |
| item.accessRights | Restricted Access | - |
| crisitem.journal.issn | 0306-4573 | - |
| crisitem.journal.eissn | 1873-5371 | - |
| Appears in Collections: | Research publications | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| constructionofweak.pdf | Non Peer-reviewed author version | 826.48 kB | Adobe PDF | View/Open |
| weak 1.pdf Restricted Access | Published version | 1.67 MB | Adobe PDF | View/Open Request a copy |
SCOPUSTM
Citations
26
checked on Oct 20, 2025
WEB OF SCIENCETM
Citations
24
checked on Oct 19, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.