Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/823
Title: Untangling Herdan’s law and Heaps’ law: mathematical and informetric arguments
Authors: EGGHE, Leo 
Issue Date: 2007
Publisher: WILEY-V C H VERLAG GMBH
Source: JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 58(5). p. 702-709
Abstract: Herdan’s law in linguistics and Heaps’ law in information retrieval are different formulations of the same phenomenon. Stated briefly and in linguistical terms they state that vocabularies’ sizes are concave increasing power laws of texts’ sizes. This paper investigates these laws from a purely mathematical and informetric point of view. A general informetric argument shows that the problem of proving these laws is in fact ill-posed: using the more general terminology of sources and items, we show, by presenting exact formulas from Lotkaian informetrics, that the total number T of sources is not only a function of the total number A of items but is also a function of several parameters (e.g. the parameters occurring in Lotka’s law) and consequently we show that a fixed T (or A) value can lead to different possible A (respectively T) values. Limiting the T(A)-variability to increasing samples (in e.g. a text as done in linguistics) we then show, in a purely mathematical way, that, for large sample sizes [formule] where θ is a constant, θ<1 but close to 1, hence roughly, Heaps’ or Herdan’s law can be proved without using any lingusitical or informetric argument! We also show that for smaller samples, θ is not a constant but essentially decreases as confirmed by practical examples. Finally, an exact informetric argument on random sampling in the items shows that, in most cases, T=T(A) is a concavely increasing function, in accordance with practical examples.
Keywords: Heaps’ law; Herdan’s law; power law; Lotka’s law; sample
Document URI: http://hdl.handle.net/1942/823
ISSN: 1532-2882
DOI: 10.1002/asi.20524
ISI #: 000246379700006
Category: A1
Type: Journal Contribution
Validations: ecoom 2008
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
Untangling.pdf
  Restricted Access
221.48 kBAdobe PDFView/Open    Request a copy
Show full item record

SCOPUSTM   
Citations

31
checked on Sep 3, 2020

WEB OF SCIENCETM
Citations

31
checked on May 21, 2022

Page view(s)

40
checked on May 27, 2022

Download(s)

36
checked on May 27, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.