Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/830
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGlänzel, W.-
dc.contributor.authorSchubert, A.-
dc.date.accessioned2005-06-17T14:59:17Z-
dc.date.available2005-06-17T14:59:17Z-
dc.date.issued1988-
dc.identifier.citationEgghe, L. & Rousseau, R. (Ed.) Informetrics 87/88, Belgium : Diepenbeek, pag 75-83-
dc.identifier.issn0-444-70425-6-
dc.identifier.urihttp://hdl.handle.net/1942/830-
dc.description.abstractThe distributions of non-negative random variables occurring in scientometrics are said to have a proper tail if they asymptotically obey "Zipf's Law", i.e., if lim (I-F(k)) k a = const k- " for some real a > 0 where F denotes the cumulative distribution. The tail of scientometric distributions has a particular significance because it generally contains the most "prominent" elements of the population (e.g. highest cited papers or most productive authors). In addition, the tail parameter, a , is a sensitive indicator of several fundamental features of the whole distribution. It is shown that, among others, the tail parameter governs order and rank statistics. New estimation methods of a as well as statistical tests f w extreme values and ranked tail elements are developed. The methods are illustrated on empirical samples of citation rates and publication activity.-
dc.format.extent228138 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoen-
dc.publisherElsevier-
dc.titleTheoretical and empirical studies of the tails of scientometric distributions-
dc.typeProceedings Paper-
local.type.specifiedProceedings Paper-
dc.bibliographicCitation.oldjcat-
item.fulltextWith Fulltext-
item.fullcitationGlänzel, W. & Schubert, A. (1988) Theoretical and empirical studies of the tails of scientometric distributions. In: Egghe, L. & Rousseau, R. (Ed.) Informetrics 87/88, Belgium : Diepenbeek, pag 75-83.-
item.contributorGlänzel, W.-
item.contributorSchubert, A.-
item.accessRightsClosed Access-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
glanzel75.pdf222.79 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.