Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/9265
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | SOTTO, Cristina | - |
dc.contributor.author | BEUNCKENS, Caroline | - |
dc.contributor.author | MOLENBERGHS, Geert | - |
dc.contributor.author | JANSEN, Ivy | - |
dc.contributor.author | VERBEKE, Geert | - |
dc.date.accessioned | 2009-02-23T13:46:11Z | - |
dc.date.issued | 2009 | - |
dc.identifier.citation | METRIKA, 69(2-3). p. 305-336 | - |
dc.identifier.issn | 0026-1335 | - |
dc.identifier.uri | http://hdl.handle.net/1942/9265 | - |
dc.description.abstract | Many models to analyze incomplete data that allow the missingness to be non-random have been developed. Since such models necessarily rely on unverifiable assumptions, considerable research nowadays is devoted to assess the sensitivity of resulting inferences. A popular sensitivity route, next to local influence (Cook in J Roy Stat Soc Ser B 2:133-169, 1986; Jansen et al. in Biometrics 59:410-419, 2003) and so-called intervals of ignorance (Molenberghs et al. in Appl Stat 50:15-29, 2001), is based on contrasting more conventional selection models with members from the pattern-mixture model family. In the first family, the outcome of interest is modeled directly, while in the second family the natural parameter describes the measurement process, conditional on the missingness pattern. This implies that a direct comparison ought not to be done in terms of parameter estimates, but rather should pass by marginalizing the pattern-mixture model over the patterns. While this is relatively straightforward for linear models, the picture is less clear for the nevertheless important setting of categorical outcomes, since models ordinarily exhibit a certain amount of non-linearity. Following ideas laid out in Jansen and Molenberghs (Pattern-mixture models for categorical outcomes with non-monotone missingness. Submitted for publication, 2007), we offer ways to marginalize pattern-mixture-model-based parameter estimates, and supplement these with asymptotic variance formulas. The modeling context is provided by the multivariate Dale model. The performance of the method and its usefulness for sensitivity analysis is scrutinized using simulations. | - |
dc.description.sponsorship | The authors gratefully acknowledge financial support from the Interuniversity Attraction Pole Research Network P6/03 of the Belgian Government (Belgian Science Policy). | - |
dc.format.extent | 256885 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en | - |
dc.publisher | SPRINGER HEIDELBERG | - |
dc.rights | © Springer-Verlag 2008 | - |
dc.subject.other | Categorical data; Multivariate Dale model; Multiple imputation | - |
dc.subject.other | categorical data; multivariate Dale model; multiple imputation | - |
dc.title | Marginalizing pattern-mixture models for categorical data subject to monotone missingness | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 336 | - |
dc.identifier.issue | 2-3 | - |
dc.identifier.spage | 305 | - |
dc.identifier.volume | 69 | - |
local.format.pages | 32 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | [Sotto, Cristina; Beunckens, Caroline; Molenberghs, Geert; Jansen, Ivy] Hasselt Univ, I Biostat, B-3590 Diepenbeek, Belgium. [Sotto, Cristina] Univ Philippines, Sch Stat, Quezon City 1101, Philippines. [Verbeke, Geert] Katholieke Univ Leuven, I Biostat, Leuven, Belgium. | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.bibliographicCitation.oldjcat | A1 | - |
dc.identifier.doi | 10.1007/s00184-008-0219-y | - |
dc.identifier.isi | 000263096600012 | - |
item.fulltext | With Fulltext | - |
item.contributor | SOTTO, Cristina | - |
item.contributor | BEUNCKENS, Caroline | - |
item.contributor | MOLENBERGHS, Geert | - |
item.contributor | JANSEN, Ivy | - |
item.contributor | VERBEKE, Geert | - |
item.fullcitation | SOTTO, Cristina; BEUNCKENS, Caroline; MOLENBERGHS, Geert; JANSEN, Ivy & VERBEKE, Geert (2009) Marginalizing pattern-mixture models for categorical data subject to monotone missingness. In: METRIKA, 69(2-3). p. 305-336. | - |
item.accessRights | Open Access | - |
item.validation | ecoom 2010 | - |
crisitem.journal.issn | 0026-1335 | - |
crisitem.journal.eissn | 1435-926X | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
pmmcat05.pdf | Peer-reviewed author version | 250.86 kB | Adobe PDF | View/Open |
a.pdf Restricted Access | Published version | 298.34 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.