Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/9287
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOOMS, Alfons-
dc.date.accessioned2009-03-02T10:07:06Z-
dc.date.issued2009-
dc.identifier.citationJOURNAL OF ALGEBRA, 321(4). p. 1293-1312-
dc.identifier.issn0021-8693-
dc.identifier.urihttp://hdl.handle.net/1942/9287-
dc.description.abstractLet U(g) be the enveloping algebra of a finite-dimensional Lie algebra g over a field k of characteristic zero, Z(U(g)) its center and Sz(U(g)) its semi-center. A sufficient condition is given in order for Sz(U(g)) to be a polynomial algebra over k. Surprisingly, this condition holds for many Lie algebras, especially among those for which the radical is nilpotent, in which case Sz(U(g)) = Z(U(g)). In particular, it allows the explicit description of Z(U(g)) for more than half of all complex, indecomposable nilpotent Lie algebras of dimension at most 7. (C) 2008 Elsevier Inc. All rights reserved.-
dc.language.isoen-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.subject.otherUniversal enveloping algebras; Lie algebras; Semi-invariants-
dc.titleComputing invariants and semi-invariants by means of Frobenius Lie algebras-
dc.typeJournal Contribution-
dc.identifier.epage1312-
dc.identifier.issue4-
dc.identifier.spage1293-
dc.identifier.volume321-
local.format.pages20-
local.bibliographicCitation.jcatA1-
dc.description.notesHasselt Univ, Dept Math, B-3590 Diepenbeek, Belgium.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1016/j.jalgebra.2008.10.026-
dc.identifier.isi000263333400011-
item.validationecoom 2010-
item.accessRightsClosed Access-
item.fulltextWith Fulltext-
item.fullcitationOOMS, Alfons (2009) Computing invariants and semi-invariants by means of Frobenius Lie algebras. In: JOURNAL OF ALGEBRA, 321(4). p. 1293-1312.-
item.contributorOOMS, Alfons-
crisitem.journal.issn0021-8693-
crisitem.journal.eissn1090-266X-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
ComputingInvariants1.pdfNon Peer-reviewed author version286.18 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

22
checked on Oct 6, 2025

WEB OF SCIENCETM
Citations

18
checked on Oct 11, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.