Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/9287
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOOMS, Alfons-
dc.date.accessioned2009-03-02T10:07:06Z-
dc.date.issued2009-
dc.identifier.citationJOURNAL OF ALGEBRA, 321(4). p. 1293-1312-
dc.identifier.issn0021-8693-
dc.identifier.urihttp://hdl.handle.net/1942/9287-
dc.description.abstractLet U(g) be the enveloping algebra of a finite-dimensional Lie algebra g over a field k of characteristic zero, Z(U(g)) its center and Sz(U(g)) its semi-center. A sufficient condition is given in order for Sz(U(g)) to be a polynomial algebra over k. Surprisingly, this condition holds for many Lie algebras, especially among those for which the radical is nilpotent, in which case Sz(U(g)) = Z(U(g)). In particular, it allows the explicit description of Z(U(g)) for more than half of all complex, indecomposable nilpotent Lie algebras of dimension at most 7. (C) 2008 Elsevier Inc. All rights reserved.-
dc.language.isoen-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.subject.otherUniversal enveloping algebras; Lie algebras; Semi-invariants-
dc.titleComputing invariants and semi-invariants by means of Frobenius Lie algebras-
dc.typeJournal Contribution-
dc.identifier.epage1312-
dc.identifier.issue4-
dc.identifier.spage1293-
dc.identifier.volume321-
local.format.pages20-
local.bibliographicCitation.jcatA1-
dc.description.notesHasselt Univ, Dept Math, B-3590 Diepenbeek, Belgium.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1016/j.jalgebra.2008.10.026-
dc.identifier.isi000263333400011-
item.contributorOOMS, Alfons-
item.fullcitationOOMS, Alfons (2009) Computing invariants and semi-invariants by means of Frobenius Lie algebras. In: JOURNAL OF ALGEBRA, 321(4). p. 1293-1312.-
item.validationecoom 2010-
item.fulltextWith Fulltext-
item.accessRightsClosed Access-
crisitem.journal.issn0021-8693-
crisitem.journal.eissn1090-266X-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
ComputingInvariants1.pdfNon Peer-reviewed author version286.18 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.