Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/955
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLEINDERS, Dirk-
dc.contributor.authorMarx, J.-
dc.contributor.authorTyszkiewicz, J.-
dc.contributor.authorVAN DEN BUSSCHE, Jan-
dc.date.accessioned2006-05-12T11:50:01Z-
dc.date.available2006-05-12T11:50:01Z-
dc.date.issued2005-
dc.identifier.citationJournal of Logic, Language and Information, 14. p. 331-343-
dc.identifier.issn0925-8531-
dc.identifier.urihttp://hdl.handle.net/1942/955-
dc.description.abstractIn the 1970s Codd introduced the relational algebra, with operators selection, projection, union, difference and product, and showed that it is equivalent to first-order logic. In this paper, we show that if we replace in Codd’s relational algebra the product operator by the “semijoin” operator, then the resulting “semijoin algebra” is equivalent to the guarded fragment of first-order logic. We also define a fixed point extension of the semijoin algebra that corresponds to μGF.-
dc.format.extent175612 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoen-
dc.publisherKluwer-
dc.titleThe semijoin algebra and the guarded fragment-
dc.typeJournal Contribution-
dc.identifier.epage343-
dc.identifier.spage331-
dc.identifier.volume14-
local.bibliographicCitation.jcatA2-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA2-
dc.identifier.doi10.1007/s10849-005-5789-8-
item.fulltextWith Fulltext-
item.contributorLEINDERS, Dirk-
item.contributorMarx, J.-
item.contributorTyszkiewicz, J.-
item.contributorVAN DEN BUSSCHE, Jan-
item.fullcitationLEINDERS, Dirk; Marx, J.; Tyszkiewicz, J. & VAN DEN BUSSCHE, Jan (2005) The semijoin algebra and the guarded fragment. In: Journal of Logic, Language and Information, 14. p. 331-343.-
item.accessRightsClosed Access-
crisitem.journal.issn0925-8531-
crisitem.journal.eissn1572-9583-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
semijoin.pdf171.5 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.