Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/9691
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBEUNCKENS, Caroline-
dc.contributor.authorSOTTO, Cristina-
dc.contributor.authorMOLENBERGHS, Geert-
dc.date.accessioned2009-07-29T14:05:37Z-
dc.date.issued2008-
dc.identifier.citationCOMPUTATIONAL STATISTICS & DATA ANALYSIS, 52(3). p. 1533-1548-
dc.identifier.issn0167-9473-
dc.identifier.urihttp://hdl.handle.net/1942/9691-
dc.description.abstractMissingness frequently complicates the analysis of longitudinal data. A popular solution for dealing with incomplete longitudinal data is the use of likelihood-based methods, when, for example, linear, generalized linear, or non-linear mixed models are considered, due to their validity under the assumption of missing at random (MAR). Semi-parametric methods such as generalized estimating equations (GEEs) offer another attractive approach but require the assumption of missing completely at random (MCAR). Weighted GEE (WGEE) has been proposed as an elegant way to ensure validity under MAR. Alternatively, multiple imputation (MI) can be used to pre-process incomplete data, after which GEE is applied (MI-GEE). Focusing on incomplete binary repeated measures, both methods are compared using the so-called asymptotic, as well as small-sample, simulations, in a variety of correctly specified as well as incorrectly specified models. In spite of the asymptotic unbiasedness of WGEE, results provide striking evidence that MI-GEE is both less biased and more accurate in the small to moderate sample sizes which typically arise in clinical trials. (c) 2007 Elsevier B.V. All rights reserved.-
dc.description.sponsorshipThe authors gratefully acknowledge support from Fonds Wetenschappelijk Onderzoek-Vlaanderen Research Project G.0002.98 “Sensitivity Analysis for Incomplete and Coarse Data” and from Belgian IUAP/PAI network “Statistical Techniques and Modeling for Complex Substantive Questions with Complex Data”.-
dc.format.extent229737 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE BV-
dc.rights© 2007 Elsevier B.V. All rights reserved.-
dc.subject.othermissing at random; weighted GEE; multiple imputation GEE; asymptotic bias-
dc.subject.othermissing at random; weighted GEE; multiple imputation GEE; asymptotic bias-
dc.titleA simulation study comparing weighted estimating equations with multiple imputation based estimating equations for longitudinal binary data-
dc.typeJournal Contribution-
dc.identifier.epage1548-
dc.identifier.issue3-
dc.identifier.spage1533-
dc.identifier.volume52-
local.format.pages16-
local.bibliographicCitation.jcatA1-
dc.description.notes[Beunckens, Caroline; Sotto, Cristina; Molenberghs, Geert] Hasselt Univ, Ctr Stat, B-3590 Diepenbeek, Belgium. [Sotto, Cristina] Univ Philippines, Sch Stat, Quezon City 1101, Philippines.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1016/j.csda.2007.04.020-
dc.identifier.isi000253669700022-
item.fulltextWith Fulltext-
item.contributorBEUNCKENS, Caroline-
item.contributorSOTTO, Cristina-
item.contributorMOLENBERGHS, Geert-
item.fullcitationBEUNCKENS, Caroline; SOTTO, Cristina & MOLENBERGHS, Geert (2008) A simulation study comparing weighted estimating equations with multiple imputation based estimating equations for longitudinal binary data. In: COMPUTATIONAL STATISTICS & DATA ANALYSIS, 52(3). p. 1533-1548.-
item.accessRightsOpen Access-
item.validationecoom 2009-
crisitem.journal.issn0167-9473-
crisitem.journal.eissn1872-7352-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
GEE Paper CSDA08.pdf
  Restricted Access
Published version231.73 kBAdobe PDFView/Open    Request a copy
GeertMolenberghs12.pdfPeer-reviewed author version234.69 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.