Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/987
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEGGHE, Leo-
dc.contributor.authorROUSSEAU, Ronald-
dc.contributor.authorRousseau, Sandra-
dc.date.accessioned2006-06-06T13:43:29Z-
dc.date.available2006-06-06T13:43:29Z-
dc.date.issued2007-
dc.identifier.citationJOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 58(6). p. 777-785-
dc.identifier.issn1532-2882-
dc.identifier.urihttp://hdl.handle.net/1942/987-
dc.description.abstractSeveral characteristics of classical Lorenz curves make them unsuitable for the study of a group of top-performers. TOP-curves, defined as a kind of mirror image of TIP-curves used in poverty studies, are shown to possess the properties necessary for adequate empirical ranking of various data arrays, based on the properties of the highest performers (the core). TOP-curves and essential TOP-curves, also introduced in this article, simultaneously represent the incidence, intensity and inequality among the top. It is shown that TOP-dominance partial order, introduced in this article, is stronger than Lorenz dominance order. In this way, this article contributes to the study of cores, a central issue in applied informetrics.-
dc.format.extent154087 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoen-
dc.publisherWiley Periodicals, Inc.-
dc.subjectCore-
dc.subjectTOP-curves-
dc.subjectTIP-curves-
dc.subjectInequality-
dc.subjectGeneralized Lorenz curves-
dc.subjectPoverty curves-
dc.subjectTop dominance partial order-
dc.subjectH-index-
dc.titleTOP-curves-
dc.typeJournal Contribution-
dc.identifier.epage785-
dc.identifier.issue6-
dc.identifier.spage777-
dc.identifier.volume58-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1002/asi.20539-
dc.identifier.isi000246379800002-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.contributorROUSSEAU, Ronald-
item.contributorRousseau, Sandra-
item.contributorEGGHE, Leo-
item.fullcitationEGGHE, Leo; ROUSSEAU, Ronald & Rousseau, Sandra (2007) TOP-curves. In: JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 58(6). p. 777-785.-
item.validationecoom 2008-
crisitem.journal.issn1532-2882-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
top 1.pdf266.04 kBAdobe PDFView/Open
top-curves.pdf266.04 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

7
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

5
checked on Jun 29, 2022

Page view(s)

12
checked on Jun 30, 2022

Download(s)

8
checked on Jun 30, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.