Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/11439
Title: Hochschild (Co)homology for Lie Algebroids
Authors: Calaque, Damien
Rossi, Carlo A.
VAN DEN BERGH, Michel 
Issue Date: 2010
Publisher: OXFORD UNIV PRESS
Source: INTERNATIONAL MATHEMATICS RESEARCH NOTICES, (21). p. 4098-4136
Abstract: We define the Hochschild (co)homology of a ringed space relative to a locally free Lie algebroid. Our definitions mimic those of Swan and Caldararu for an algebraic variety. We show that our (co)homology groups can be computed using suitable standard complexes. Our formulas depend on certain natural structures on jet bundles over Lie algebroids. In an appendix, we explain this by showing that such jet bundles are formal groupoids which serve as the formal exponentiation of the Lie algebroid.
Notes: [Calaque, Damien] Univ Lyon 1, Inst Camille Jordan, F-69622 Villeurbanne, France. [Rossi, Carlo A.] ETH, Dept Math, CH-8092 Zurich, Switzerland. [van den Bergh, Michel] Hasselt Univ, Dept WNI, B-3590 Diepenbeek, Belgium.
Document URI: http://hdl.handle.net/1942/11439
ISSN: 1073-7928
e-ISSN: 1687-0247
DOI: 10.1093/imrn/rnq033
ISI #: 000283682600005
Category: A1
Type: Journal Contribution
Validations: ecoom 2011
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
0908.2630v3.pdf262.76 kBAdobe PDFView/Open
Show full item record

SCOPUSTM   
Citations

7
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

7
checked on May 21, 2022

Page view(s)

52
checked on May 20, 2022

Download(s)

96
checked on May 20, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.