Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/1346
Title: The Gelfand-Kirillov conjecture for semi-direct products of Lie algebras
Authors: OOMS, Alfons 
Issue Date: 2006
Publisher: Elsevier
Source: JOURNAL OF ALGEBRA, 305(2). p. 901-911
Abstract: Let g be an n-dimensional Lie algebra over a field k of characteristic zero and let W be a g-module of dimension at least n. Sufficient conditions are given in order for the semi-direct product g + W to satisfy the Gelfand-Kirillov conjecture. This implies that this conjecture holds for an important class of Frobenius Lie algebras. Special attention is devoted to the case where g = sl(2,k).
Document URI: http://hdl.handle.net/1942/1346
DOI: 10.1016/j.jalgebra.2006.03.009
ISI #: 000245638800015
Category: A1
Type: Journal Contribution
Validations: ecoom 2008
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
TheGelfandKirillovConjecture._2.pdfPublished version155.4 kBAdobe PDFView/Open
Show full item record

SCOPUSTM   
Citations

4
checked on Sep 2, 2020

WEB OF SCIENCETM
Citations

5
checked on May 21, 2022

Page view(s)

66
checked on May 27, 2022

Download(s)

114
checked on May 27, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.